

Recommended Acceptance Testing Procedure
for Network Enabled Training Simulators

Peter Ross; Peter Clark

Air Operations Division
Systems Sciences Laboratory

Defence Science and Technology Organisation (DSTO)
PO Box 4331, Melbourne, Victoria, 3001, Australia

Email: peter.ross@dsto.defence.gov.au

Abstract. Acceptance testing is a necessary stage in any complex procurement, as it determines whether the supplier
has satisfied the requirements of the contract. Over the next ten years the Department of Defence will acquire several
new platform training simulators that support distributed team training, including the Airborne Early Warning &
Control operational mission simulator, AP-3C advanced flight and operational mission simulators, Armed
Reconnaissance Helicopter simulator, Super Seasprite full flight mission simulator, and FFG Upgrade onboard
training system and team trainer. To ensure networked interoperability between training simulators, it is essential that
they be tested thoroughly against the relevant distributed simulation standards. Air Operations Division, DSTO, has
been tasked to assist the testing of the aforementioned simulators. To streamline this work, a uniform procedure for
testing distributed training enabled simulators has been developed. This paper defines distributed simulation concepts
with regard to platform training simulators, and describes the acceptance testing procedure. Whilst the procedure is
applicable to modern distributed simulation standards, emphasis has been placed on the use of Distributed Interactive
Simulation and the High Level Architecture Real-time Platform Reference Federation Object Model (RPR-FOM), as
the majority of new platform training simulators will employ these standards. A summary of the procedure when
applied to recent training simulator acquisitions is also provided.

1. INTRODUCTION

Acceptance testing is a necessary stage in any complex
procurement, as it determines whether the supplier has
satisfied the requirements of the contract [1]. Over the
next ten years the Department of Defence will acquire
several new platform training simulators that support
distributed team training, otherwise known as network-
enabled training simulators. For distributed team
training to be reliable and cost effective, and therefore
embraced by the user, simulators must be network
interoperable. The risk of non-interoperability is
reduced by thoroughly testing simulators against the
relevant distributed simulation standards. However, at
present there is no uniform procedure for this form of
testing.

A majority of the new platform training simulators will
support the Distributed Interactive Simulation (DIS)
standard. These include the AP-3C Advanced Flight
Simulator, Airborne Early Warning & Control
(AEW&C) Operational Mission Simulator, Armed
Reconnaissance Helicopter (ARH) simulator, Super
Seasprite simulator, and FFG Upgrade Project Onboard
Training System (OBTS) and team trainer. Several
simulators supporting the High Level Architecture
(HLA) standard will be delivered in the future,
including the F/A-18 Hornet Aircrew Training System.

Whilst all existing network-enabled training simulators,
including the Royal Australian Air Force AP-3C OMS,
Air Defence Ground Environment Simulator, and Royal
Australian Navy (RAN) FFG and ANZAC operations
room team trainers, have supported the DIS standard,

the requirements specification and acceptance testing
procedures have varied. As a result some simulators
have a lesser technical ability to participate in
distributed training exercises than others, due to both
inadequate requirements specification, varying model
resolution, and defects present in the delivered product.
To reduce this risk for new acquisitions, Air Operations
Division (AOD), DSTO, has undertaken research to
identify minimum interoperability requirements and
issues relating to the implementation of network-enabled
training simulators [2],[3]. It is worth noting that
Australia is not the only country faced with these
problems, and with the advent of modern combat and
mission systems, that simulator interoperability has
relevance beyond training [4],[5].

This paper details recent work undertaken in developing
a uniform testing procedure for network-enabled
training simulators. Development of the procedure
began during involvement with acceptance testing of the
RAN “Maritime Warfare Training Centre” Phase 2
implementation. It has matured substantially through the
course of use, with the development of a DIS test case
library representing the bulk of the effort. An extract
from this library is presented, as well as a summary of
the procedure when applied to recent simulator
acquisitions.

2. DEFINING DISTRIBUTED TEAM TRAINING

Before discussing the testing procedure, it is first
necessary to identify the types of simulators being
tested, and outline the role of distributed simulation,
networked interoperability and acceptance testing.

2.1 Platform Training Simulator

The term ‘platform training simulator’ is employed by
AOD to describe a human-in-the loop training simulator
that models the virtual battlespace at the tactical level in
real-time. Platforms, otherwise known as combat units,
and tracked weapons are referred to as entities within
the simulation. Whilst there are no set rules for
simulator design, a generic platform training simulator
normally consists of five components, that are
physically dispersed throughout the training facility,
namely;

Trainer. The component/s manned by the trainee/s, for
example operating consoles, cockpit, operations room,
or bridge. The platform, which the trainer represents, is
referred to as the ownship1, or the “ownship entity”
within the simulation.

Control station(s). The component/s used to configure
the simulator and control execution of a training
exercise. Standard functions include defining the
reference point (or game centre), starting and stopping
the exercise, and manually repositioning the ownship.

Instructor/Asset station(s). The component/s that
manages additional entities within the exercise, such as
those representing the red force. Traditionally these
stations have been manned by instructors and the
additional entities controlled using low-level, semi-
automated behaviours. There is a move, however, to
reduce manning requirements through the use of
intelligent agent technology [6]. The instructor station
may also incorporate functionality of the control station
or debrief components.

Debrief. The component that provides performance
feedback to the trainee/s following the execution of an
exercise.

Simulation Computer(s). The component/s that perform
platform dynamics, sensor and emitter modelling, and
display rendering calculations.

2.2 Distributed Simulation

In the context of platform training simulators,
distributed simulation is the provision of a shared virtual
battlespace, in which trainees can interact. Information
representing the virtual battlespace is known as “ground
truth” and is exchanged over a data communications
network. This information is perceived independently by
each simulator.

The way in which a simulator internally models the
virtual battlespace is called the internal model. The
internal model is often different for each training
simulator, for example one simulator may consider the
earth’s surface to be flat, whilst another may model it as
an ellipsoid. The internal model is a direct result of the
simulator’s functional requirements and corresponding
engineering design decisions. To conduct distributed

1 Variations include, ownairship, ownhelo and owntank. For

consistency, ownship is used throughout this paper.

team training, a standard model is required for all
participating simulators. Rather than forcing all
simulators to behave in the same manner, a secondary
model, known as the network model, is used.

Simulation models, be they internal or network, are
composed of objects and/or interactions2. An object
describes information that is persistent for some
duration of the simulation, for example, the visual
signature of a weapon. An interaction describes an
instantaneous event, for example, the detonation of a
weapon. Objects and interactions are parameterised by
field values. Simulation model terminology varies
between each distributed simulation standard, and is
listed for comparison in Table 1, along with the
terminology adopted by this report.

Table 1: Simulation model terminology
Adopted
Term

DIS TENA
ALSP and
HLA

Interaction PDU Message Interaction

Object
PDU with
heartbeat

Stateful
Distributed
Object

Object

Field Field Attribute
Attribute or
Parameter

It is important to realise that the network model is
purely a conceptual representation of the virtual
battlespace, and does not define how objects and
interactions are exchanged between simulators. The
exchange process is instead defined by the network
protocol, also known as the messaging or wire protocol.
The network protocol often leverages existing network
transport technologies, such as Internet Protocol (IP) or
Asynchronous Transfer Mode (ATM). Established
distributed simulation standards, including SIMulator
NETworking (SIMNET), Distributed Interactive
Simulation (DIS) and the Aggregate Level Simulation
Protocol (ALSP) define a baseline network model and
protocol. More recent standards, including HLA and the
Test and training ENabling Architecture (TENA), leave
the definition of the network model and protocol open
as an engineering design decision. These design
decisions, if not appreciated, can lead to non-
interoperability.

2.3 Distributed Simulation Interface

Network enabled training simulators incorporate a sixth
component, in addition to the generic simulator
components identified above. This distributed
simulation interface component performs two tasks. The
first is translation, where information represented by the
internal model is translated into a network model
representation, and vice-versa. Information is often
discarded, augmented or converted during the

2 Whilst recent distributed simulation standards boast

additional modelling features, such as object inheritance,
object composition and method invocation, information is
effectively described through the use of interactions, objects
and fields.

translation process; coordinate system conversion, for
example, is almost always required. The second task is
exchange, where information represented by the
network model is marshalled and sent to other hosts
using the network protocol, and conversely received and
un-marshalled. The conceptual layers of a generic
distributed simulation interface for DIS, HLA and the
International Standards Organisation Open Systems
Interconnection (ISO/OSI) network model [7], are
shown in Table 2.

Table 2: Conceptual layers and tasks of a
distributed simulation interface

Layer DIS HLA ISO/OSI
Internal
model

Internal
model

Simulation
Object Model

Application ↕
 Translation

↕

Network
model

PDU types
Federation

Object Model
Application ↕

 Exchange
↕

Presentation
Network
protocol

Byte order,
Structures,
Heartbeats,
Timeouts

Run Time
Infrastructure

Session

Transport
Network
Data Link

Network
transport

User
Datagram

Protocol / IP

Typically
IP

Physical

Objects and interactions generated by the simulator flow
down through the layers, whereas objects and
interactions generated by remote simulators flow up
through the layers. The former is referred to as sending,
and the latter as receiving. When the distributed
simulation interface is not used, the simulator is said to
be operating in stand-alone mode.

2.4 Interoperability

Interoperability is defined as the ability of two or more
systems or components to exchange information, and to
make appropriate use of that information [8]. During the
development of DIS and HLA, networked simulator
interoperability was decomposed into three distinct
levels: compliant, interoperable and compatible [9],[10].

Compliant. A simulator is considered to be compliant if
the distributed simulation interface is implemented in
accordance with the relevant standards. This is achieved
at the acceptance testing stage, by ensuring that the
translation and exchange tasks are performed correctly.

Interoperable. Two or more simulators are considered
to be interoperable if they can participate in a
distributed training exercise. This is achieved at the
requirements specification stage, by ensuring that each
simulator is built to equivalent network model and
protocol standards. Engineering design decisions
relating to the choice of network model and protocol
should be reviewed thoroughly, as these directly
influence this level of interoperability.

Compatible. Two or more simulators are considered to
be compatible if they can participate in a distributed
training exercise and achieve training objectives. This is
achieved at the training needs analysis stage by ensuring
that the capabilities and performance of each simulator
are sufficient to meet training objectives. The
expression “fair fight” is frequently used to describe
compatibility.

These definitions demonstrate that a compliant
simulator will not necessarily be interoperable with
other compliant simulators, and likewise, that just
because two or more simulators are interoperable, they
are not necessarily compatible for training.

3. ACCEPTANCE TESTING PROCEDURE

The objective of acceptance testing is to establish that
the supplier has satisfied the requirements of the
contract, therefore mitigating the risk of defects or other
inadequacies throughout the project’s operational
lifetime. It occurs prior to ownership of the project
deliverable being handed over to the customer (the
Commonwealth of Australia), and is conducted in the
intended operational environment (the training facility),
as opposed to the supplier’s development environment.
Ideally, few defects should be identified at the time of
acceptance as modern software engineering practices
encourage testing throughout the product development
cycle [11]. Unfortunately such practices are not always
adopted, or if adopted, are later discarded in the rush to
meet delivery schedules.

Thorough testing of a simulator’s distributed simulation
interface is required for three reasons. Firstly,
distributed simulation protocols are often intolerant to
implementation faults; one incorrectly set field (or data
bit) is sufficient to prevent or distributed team training,
or lessen its effectiveness. Secondly, distributed
simulation standards are often ambiguous and
incomplete to some degree, meaning that two standards
compliant simulators may be non-interoperable due to
the suppliers forming different interpretations of the
standard’s intent. Finally, the defects are seldom
apparent until the distributed simulation interface is
used in anger. The cost of resolving defects at short
notice for an exercise is often prohibitive.

Contract requirements often specify implementation to a
subset of distributed simulation standards, as opposed to
interoperability with a specific simulator. For this
reason, as alluded to in section 2.4, acceptance testing
can only guarantee compliance. Interoperability is
achieved through consistent requirements specification,
although a uniform testing procedure serves to reduce
the risk of non-interoperability.

The time and resources allocated to acceptance testing
are often limited; therefore the procedure needs to be
comprehensive, efficient and repeatable. The procedure
employed by AOD consists of three stages and is
detailed in the following sections.

3.1 Planning

Planning identifies the aspects of the simulator to be
tested, level of manning required to operate the trainer
and/or instructor stations, and the anticipated duration of
testing. Often a simple approach is taken, where testing
of all functionality related to the distributed simulation
interface is proposed. As in the planning for a
distributed training exercise, agreement must be reached
on data, including platform types and the location within
the virtual battlespace whereby testing will take place.
Deployment and set-up of the test equipment, including
data classification and network media compatibility,
must be also considered.

Given that the distributed simulation interface shares
connectivity with other components of the simulator, it
is desirable to perform distributed simulation tests
following preliminary acceptance of the stand-alone
simulator. Otherwise, the results of testing may be
influenced by defects present in the stand-alone
simulator.

3.2 Test Activity

The test activity occurs at the training facility and often
spans several days, depending of the amount of testing
proposed in the planning stage. The black box testing
methodology, which evaluates the functionality or
performance of the system irrespective of internal
implementation details, is employed. Figure 1 shows the
black box view of a generic training simulator, where
the exposed interfaces are the Human Machine Interface
(HMI) and Network Interface Card (NIC).

Figure 1: Black box view of a training simulator

The functional requirements are tested by stimulating
the black box with input actions and witnessing the
resulting outputs. This is performed in an iterative
manner using a library of test cases3 tailored to the
distributed simulation standards supported by the
simulator. Test cases are categorised into three types: ● Configuration testing verifies that the simulator can

be configured appropriately for a distributed
training exercise. ● Send testing verifies that information sent by the
simulator complies with the relevant simulation
standards. The input actions for send tests normally
relate to the HMI.

3 Test cases are a fundamental testing concept, that identify

the expected output from a specific input stimulus. A test
case is considered to pass if the output witnessed during the
test execution meets the output expected.

● Receive testing verifies that the simulator responds
correctly to information generated by remote
simulators. The input actions for receive tests
normally relate to the NIC or network model.

It is desirable to perform testing in the order listed
above as this enables an understanding of the
simulator’s capabilities to be acquired through a passive
analysis of the network data, prior to sending
information to the simulator.

Certain test cases, such a dead reckoning accuracy tests,
require detailed analysis of the witnessed output, and are
best performed following the test activity (for example,
in a laboratory environment) to make more efficient use
of time with the simulator. To facilitate this, relevant
HMI actions and network data sent and received by the
NIC are recorded in a test log, which is a combination
of written notes and data files, where log entries are time
stamped to enable correlation of events.

3.3 Documentation

Following the test activity, a document is produced that
details the results of testing. The report can be styled as
either a formal report, that introduces the simulator and
describes the outcomes of test activity, or a compilation
of individual incident reports, where each cites the
outcome of a specific test case.

Regardless of the style used, each problem identified is
highlighted by severity, and the potential impact on
training effectiveness explored in terms meaningful to
the project authority. AOD currently employs a three
tier severity rating scheme, where a FAULT indicates
non-compliance that prevents interoperability with
another simulator, and resolution is advised. An ISSUE
indicates non-compliance, however the problem is
unlikely to prevent interoperability, and therefore
resolution is desirable. An ACTION indicates the need
for further testing as the severity of problem is
unknown, for example, due to contradictory test results.

Ultimately the report indicates whether the project
authority should accept the distributed simulation
component of the simulator, and if not, makes
recommendations for change. If significant problems are
identified, the relevant test cases should be repeated to
ensure that the supplier makes appropriate corrections.

4. TEST CASE DEVELOPMENT

Test cases serve to demonstrate the implementation of
individual distributed simulation requirements. There
are several types of requirements for distributed
simulation, as shown in Table 3. An example network
model requirement may stipulate “simulation of
Identification Friend or Foe (IFF) transponder mode 3”.
Each requirement type differs in terms of complexity,
test case development methodology and the equipment
suitable to facilitate test execution.

Given that distributed simulation standards are often
ambiguous, it is necessary for the test engineers to have

a clear and consistent understanding of the standards
requirements. In related research, AOD has documented
known ambiguity and established interpretations of the
DIS standard, and is actively involved in the
development of a revised standard [12],[13]. To add
authority and assist defect resolution, test cases should
reference the original requirements text, and state any
interpretations applied.

Table 3: Typical distributed simulation requirements
Requirement Suitable test equipment
Network hardware Another network device
Network transport Transport manipulation utilities
Network protocol
Network model

Object and interaction generation
and instrumentation equipment

Training
Scenario generator, or
another training simulator

Network transport and hardware requirements are
normally tested using a small number of test cases, for
example, to demonstrate Internet Control Message
Protocol (ICMP) ping replies, network address and port
configuration, and hardware compatibility with other
network devices, such as switches, hubs and routers.

For each network protocol requirement, test cases are
developed to demonstrate exchange of data, for
example, packet heartbeat intervals, byte ordering and
data structure placement. Because the network protocol
is frequently synonymous with the network model, these
tests are carried out in parallel with network model tests.
However, for some distributed simulation standards, it is
possible to independently test the network protocol
implementation [14].

For each network model requirement, the related objects
and interactions are identified, and test cases written for
relevant field permutations, with respect to send and
receive testing. This is done to exercise all relevant
software execution paths. For example, the IFF
requirement above would be evaluated with at least four
test cases, in order to demonstrate sending and receiving
of mode 3 when the transponder is enabled and
disabled. If the requirement stipulates configurable data,
such as platform and system enumerations, additional
test cases are written to demonstrate re-configuration of
the data.

Training requirements are evaluated by demonstrating
use of the simulator under anticipated operational
conditions, for example, the execution of a standard
training scenario or loading of the system with a
prescribed number of entities. Test cases may also
address relevant operator manuals and maintenance
training packages, although this has been outside the
scope of testing previously undertaken by the authors.

A standard test case specification format was assembled,
based on existing test documentation standards [15]. An
extract from AOD’s DIS test case library is shown in
Table 4. Related tests cases are grouped into tables, with
columns that describe the test case identification
number, execution requirement (M=mandatory,
S=applied to all subsequent tests), applicable simulator
components (T=trainer, C=control station, and so on),
the test input and expected output, and pass/fail criteria
(R=requirement, D=desirable). Fields are highlighted in
italics, bitfields are underlined, and enumerated value
names are wrapped in single quotes.

Table 4: Extract of the IFF test case group (send testing)
ID E C Input (HMI) Expected Output (NIC) P

S-5.0 S - (any – IFF Layer 1) IFF PDUs are sent at a 10 second heartbeat rate, or when one or more
operational parameters has changed and the two second change latency has
elapsed. [IEEE 1278.1A, section 4.5.6.5.2]
System Type, System Name and System Mode are defined in SISO-EBV section
8.3.1.1, and indicate an appropriate IFF transponder device. [IEEE 1278.1A,
section 5.2.58]
The Change Indicator bit of Change/Options is set to ‘Initial report or change
since last report’ or ‘No change since last report’. [IEEE 1278.1A, section
4.5.6.5.2]
The Layer 1 bit of Information Layers is set to ‘On’, and Layer 2 bit of
Information Layers is set to ‘Off’. [SISO-EBV 8.3.2.2.10]
Antenna Location wrt Entity indicates the location of the transmitter antenna
relative to the ownship entity location. [IEEE 1278.1A, section 5.3.7.4.1]
If one or more modes are enabled, The System On/Off bit of System Status is set
to ‘On’ and the Operational Status bit is set to ‘Operational’. [SISO-EBV,
section 8.3.6.1]

R

S-5.1 M C Create the ownship entity. N/A
S-5.2 M T Activate IFF transponder

with, no modes enabled, and
wait at least 15 seconds.

The Status bit of Parameter 1 through Parameter 6 is set to ‘Off’. [SISO-EBV,
section 8.3.6.1]

D

S-5.3 - T Enable Mode 3 with code
‘2345’, for at least 15
seconds.

The Status bit of Parameter 3 is set to ‘On’, the Damage bit is set to ‘No
Damage’ and the Malfunction bit is set to ‘No Malfunction’. [SISO-EBV,
section 8.3.6.1]
The Code Element bits of Parameter 3 indicate ‘2345’. [SISO-EBV, section 8.3]

R

S-5.4 M T Deactivate IFF transponder
and wait at least 15 seconds.

IFFPDUs are no longer sent for the ownship entity, or one or more IFFPDUs are
sent with the System On/Off bit of System Status set to ‘Off’. [SISO-EBV,
section 8.3.6.1]

R

5. RECENT APPLICATION

The acceptance testing procedure has been applied to
several training simulators and a number of technical
reports written. Whilst it is inappropriate to cite
specific simulator defects, there are some common,
reoccurring problems, and these have been categorised
below. Whilst for the most part trivial software faults,
if not identified during acceptance, or whilst the
simulator is under warranty, they are often far from
trivial to resolve. Where defects cannot be resolved,
the related simulator functionality is ignored for
training purposes, or filtering equipment is installed to
intercept network data exchanged between simulators,
and modify or filter it accordingly. ● Measurement units are not respected, for

example, knots are reported when the standard
mandates metres/sec. FAULT. ● The association between objects and/or
interactions is not maintained, for example
between corresponding Fire and Detonation
interactions. FAULT or ISSUE, depending on the
association. ● Unused fields are set to zero or to random
numeric values. FAULT or ISSUE, depending on
circumstances. ● Packet heartbeat interval, byte ordering or data
structure placement rules are not followed.
FAULT. ● Enumerations, or data that may at some point
need to be modified, is hard-coded into the
software, and cannot be configured by operator or
maintenance staff. ISSUE. ● Instability, or program crashes when fields are set
to values not anticipated by the simulator.
FAULT or ISSUE, depending on likelihood of a
crash.

6. OTHER SIMULATIONS STANDARDS

Although the procedure was originally intended for
DIS standards testing, it is independent of the
underlying distributed simulation technology, and
could be applied to other standards, such as HLA,
were the need to arise. Test case development,
however, will be required to address specific
requirements of the standard.

Much the existing DIS test library can be reused, if the
standard employs a network model that is equivalent
to the DIS network model. For example, adapting the
earlier IFF test case example to the HLA Real-time
Platform Reference Federation Object Model would
require modification of tests S-5.0 and S-5.4, in order
to address the expected outputs that are specific to
HLA. Minor wording changes would also be
necessary, for example, Code Element would become
Mode3ACode.

7. CONCLUSION

Acceptance testing is a frequently under-appreciated
area of distributed simulation, as evident from its

recent application. The procedure presented in this
paper is beneficial to the Department of Defence and
the wider simulation community, as it allows network-
enabled training simulators to be comprehensively
tested in an efficient and repeatable manner. Over the
next 24 months, AOD will apply this procedure to
several new training simulator acquisitions, and
intends to publish its library of DIS test cases to
inform project management and engineering staff
alike. Whilst emphasis has been placed on DIS testing,
the procedure is applicable to other distributed
simulation standards.

REFERENCES

1. Defence Material Organisation, (2004), "Defence

Procurement Policy Manual - Version 5.0".
2. Zalcman, L.B., (2004), "What Questions Should I Ask

Regarding DIS or HLA Interoperability For My ADF
Simulator Acquisition?" Proceedings of the 9th SimTecT
Conference, May 2004, Canberra, Australia.

3. Zalcman, L.B., (2004), "Which DIS PDUs Should Be In
My ADF Training Simulator?" Proceedings of the 9th
SimTecT Conference, May 2004, Canberra, Australia.

4. Valle, T., and B. McGregor, (2004), "The DMT Master
Conceptual Model". Interservice/Industry Training,
Simulation and Education Conference 2004, December
2004, Orlando, Florida, USA.

5. Byrum, C., Mittura, A., and M. Hohneker, (2000),
“Distributed Engineering Plant Simulation/Stimulation
Environment Accreditation of Accuracy”. Fourth IEEE
International Workshop on Distributed Simulation and
Real-Time Applications, August 2000, San Francisco,
California, USA.

6. Schaafstal, A.M., Lyons, D.M., and R.T. Reynolds,
(2001), "Teammates and Trainers: The Fusion of SAFs and
ITSs". Proceedings of the 10th Conference on Computer
Generated Forces and Behavioural Representation, May
2001, Orlando, Florida, USA.

7. ISO/IEC 7498-1:1994(E), (1994), "Information technology
- Open Systems Interconnection - Basic Reference Model:
The Basic Model".

8. IEEE 610-1990, (1990), "IEEE Standard Computer
Dictionary: A Compilation of IEEE Standard Computer
Glossaries". ISBN 1-55937-079-3.

9. Loper, M.L., (1996), "HLA Testing: Separating
Compliance from Interoperability". Proceedings 14th DIS
Workshop on Standards for the Interoperability of
Distributed Simulations, March 1996, Orlando, Florida,
USA.

10. Ratzenberger, A., (1995), "DIS Compliant, Interoperable
and Compatible: The Need for Definitions and Standards".
Proceedings of the 12th DIS Workshop on Standards for
the Interoperability of Distributed Simulations, March
1995, Orlando, Florida, USA.

11. Hetzel, Bill, (1988), "The Complete Guide to Software
Testing (Second Edition)". ISBN 0-89435-242-3.

12. Simulation Interoperability Standards Organisation (SISO)
Product Nomination for the IEEE 1278.1 Distributed
Interactive Simulation (DIS) Product Development Group -
September 2004.

13. Ryan, P.J, Ross, P.W., Clark, P.D., and L.B. Zalcman,
(2005), "Australian Contribution to International
Simulation Standards Development". Proceedings of the
10th Simulation and Training Technology Conference,
May 2005, Sydney, Australia.

14. Symington, S., Kaplan, J., Kuhl, F., Tufarolo, J.,
Weatherly, R., and J. Nielsen, (2000), "Verifying HLA
RTIs". Fall Simulation Interoperability Workshop,
September 2000, Orlando, Florida, USA.

15. IEEE 829-1998, (1998), "IEEE Standard for Software Test
Documentation". ISBN 0-7381-14448.

