
Performance of Dead Reckoning Algorithms Across Technology Eras

Will Oliver, Peter Ryan and Peter Ross

Defence Science & Technology Group

506 Lorimer St, Fishermans Bend, Victoria 3207, Australia

william.oliver@dst.defence.gov.au

peter.ryan@dst.defence.gov.au

peter.ross@dst.defence.gov.au

Keywords:

Distributed Interactive Simulation; dead reckoning algorithms, Moore’s Law

ABSTRACT: Dead reckoning (DR) is employed in Advanced Distributed Simulation to reduce the need to

continually update a simulated entity’s state information. The IEEE 1278.1 Distributed Interactive Simulation

(DIS) protocol standard defines a set of 9 algorithms for entity position and orientation dead reckoning. Early

work on the performance of these algorithms was reported by researchers Towers and Hines sponsored by the

then Advanced Research Projects Agency to assess the functionality of a distributed warfighting environment

with real and simulated entities. These authors also fortunately included C source code and sample results

that were used to regenerate the 1994 model results. This code and these results can be used as benchmarks

for assessing DR algorithm performance from 1994 to the present era where CPU speed is far greater. Results

show that DR performance in even a simple modern processor such as a Raspberry Pi is far superior to the

most advanced systems of 1994. Relative performance of the standard algorithms also shows similar trends

across technology eras with the algorithms that use orientation always running far slower. Estimates of

processor time can also be determined theoretically from counting the number of floating point operations

that each algorithm processes. These results are relevant to the approach that will be adopted for the next

generation of DIS and other simulation protocols such as the Real Time Platform Reference Object Model.

1. Introduction

Distributed Interactive Simulation (DIS) is a networking protocol standard that provides a method of

communicating entity state and other information such as voice communications, radar and sonar emissions

through Protocol Data Units (PDUs). These PDUs consist of data packets that are broadcast over the simulation

network. The latest standard IEEE-1278.1-2012, also known as DIS version 7, was released in 2012 [1]. The

Simulation Interoperability Standards Organization (SISO) is in the process of updating DIS to a proposed

version 8 [2].

A key feature of DIS is its use of a technique known as dead reckoning to limit the rate at which simulated

entities need to update their entity attributes such as position and velocity. DIS also uses a heartbeat mechanism

to maintain the continuity of entities within a simulation exercise.

Early work on the performance of these algorithms was reported by Towers and Hines and was sponsored by

the then Advanced Research Projects Agency to assess the functionality of a distributed warfighting

environment with real and simulated entities [3]. These authors also fortunately included C source code and

sample results that were used to regenerate the published 1994 model results. This code and these results can be

used as benchmarks for assessing dead reckoning algorithm performance from 1994 to the present era where

CPU speed is far greater.

2. Dead Reckoning in DIS

In DIS, each application maintains an internal model of the entities it is simulating and also dead reckoned

models of these. When an entity’s position or orientation has changed from the dead reckoned model by more

than a set threshold value, the application issues a new Entity State PDU to inform the other participating

applications of its position and orientation.

DIS provides a standard set of 9 dead reckoning algorithms although only a few are generally used. The first of

these assumes a static entity, numbers 2 – 5 use world-centered coordinates with the origin at the centre of the

earth, while numbers 6 – 9 employ body-centered coordinates. Each algorithm is designated by three elements:

• The first indicates whether the model specifies rotation as either fixed (F) or rotating (R).

• The second specifies dead reckoning rates to be held constant as either rate of position (P) or rate of

velocity (V). This also identifies the algorithm as being first (P) or second (V) order with respect to

position.

• The third specifies the coordinate system to be used with the dead reckoning algorithm as either world

coordinates (W) or body axis coordinates (B).

DIS version 8 proposes to replace the geocentric coordinate system with a geodetic coordinate system. This has

implications for dead reckoning where it is suggested that a single algorithm could suffice for most situations

[4]. This would save bandwidth by reducing coordinate conversion between geocentric and geodetic coordinate

systems.

2.1 Floating Point Operations

The number of floating point operations (FLOPS) for each algorithm was counted with the results shown in

Table 1. This demonstrates that the algorithms (3, 4, 7, 8) which include orientation generally have more FLOPs

than those that assume fixed orientation (1, 6, 9) and would thus require more processing time. Algorithm 9 still

requires calculation of rotation matrices (section 4.2) and has 115 FLOPS.

Table 1. Number of operations for different dead reckoning algorithms (using Tower and Hines code [3])

Algorithm Model No of Floating Point

Operations

1 Static 15

2 FPW 47

3 RPW 110

4 RVW 99

5 FVW 43

6 FPB 50

7 RPB 125

8 RVB 177

9 FVB 115

However execution times do not generally scale linearly with the number of FLOPS since the different types of

floating point operation take different times and the ratios of these are processor dependent. Divide and multiply

operations are more complex and thus slower than add and subtract operations, while cosine and sine functions

(that are used in the dead reckoning algorithms) are slower still. Thus the number of FLOPS per algorithm can

only be used for a qualitative estimate of performance.

Limare [5] carried out some tests of integer and floating point arithmetic for different processors including Intel

and ARM for various precisions. He found that floating point products are generally twice as slow as sums and

that division is even slower. The Intel processors perform better than the ARM processors used in a Raspberry

Pi.

2.2 Processing Times and Metric for Dead Reckoning Performance

The C code listing from Towers and Hines was provided with their paper [3]. This was converted to source code

using Adobe’s Optical Character Recognition feature and then debugged to remove transcription errors. The

reconstituted C code was then validated using the two test cases provided in the paper. No further changes were

made to the code.

Linux, and other POSIX1 based operating systems, provide inbuilt utilities to determine processor time for

specific operations. These include: clock() and clock_gettime(). The clock function returns an approximation of

processor time used. However, it is only accurate to microseconds. Thus to use clock to determine processing

time, many repetitions of the DR algorithm must be performed.

The clock_gettime function returns a C structure with two components: (a) the clock time in seconds, and (b) the

clock time in nanoseconds after the second. This is a more accurate way to determine processing time. Towers

and Hines provided results for two test cases with different initial conditions for DRA 4 and DRA 8. The

method applied to determine processing time for each dead reckoning algorithm was:

i. Create an array of 1000 identical PDUs for the first test case

ii.Measure the elapsed time to perform dead reckoning for the array of PDUs for the first test case using the

initial values from [3]

iii. Repeat the measurement for the second test case with initial values from [3]

iv. Average processor time over the 1000 PDUs and both test cases to get the mean value of processing time.

In all cases the free GNU Compiler Collection (GCC) system was used to compile and run the source code.

Several Linux variants (Ubuntu, Debian, and Raspbian) and Cygwin2 were employed as the test environments.

A Dead Reckoning Metric was then defined as the average of the inverse of the sum of processing times for all

9 algorithms normalised to that of the slowest system designated as system 1 (the Motorola 60840 VME

Processor):

𝑀𝑒𝑡𝑟𝑖𝑐 𝑓𝑜𝑟 𝑠𝑦𝑠𝑡𝑒𝑚 𝑖 = ∑ 𝑇𝑗
1

𝑗=9

𝑗=1

/ ∑ 𝑇𝑗
𝑖

𝑗=9

𝑗=1

This metric will be used to rate the performance of different systems by providing a single figure of merit.

1 The Portable Operating System Inteface (POSIX) is described by IEEE Std 1003.1
2 Cygwin is a Unix-like environment that runs under Windows

3. Results

Measurements of dead reckoning performance were made on modern systems and compared with the 1994

results from Towers and Hines. These are discussed in the following sections.

3.1 Results from 1994

In their 1994 paper, Towers and Hines carried out tests on DRA 4 (second order; world coordinates; roll, pitch

and yaw rotation) and DRA 8 (second order; entity coordinates; roll, pitch, and yaw rotation) for various

systems. Detailed results were provided for a set of initial values for these two algorithms dead reckoned over

an 0.5 s timestep while general performance data was provided for all 9 algorithms using the DIS 2.0.3 draft

standard dated 1993 [6]. Articulation parameters were not included in the entity dead reckoning.

The systems on which the dead reckoning algorithms were tested by these authors [3] are listed in Table 2.

Table 2. Systems tested by Towers and Hines [3]

System Released Features

Motorola 60840 VME Processor3 1990 used in early personal computers;40

MHz; floating point unit; same

features as Intel 80486

SPARC Station 104 1992 40 MHz workstation

SGI Indigo 25 1993 workstation with 100 Mhz and 150

Mhz variants

The initial results from their 1994 paper are reproduced in Figure 1. However in the original study no details

were provided as to how these results were determined so their accuracy is unknown. Results are plotted on a

semi-logarithmic scale. Interestingly the curves are nearly parallel on this scale with the slowest algorithms 3, 4,

7, and 8 being the most complicated in terms of operations to be performed. Algorithm 1 has non-zero

processing time since CPU time is required for checking the dead reckoning field, updating the time, and

checking for articulation parameters.

Figure 1. Comparison of performance of processors for the standard set of dead reckoning algorithms

from Towers and Hines [3]

3 https://en.wikipedia.org/wiki/Motorola_Single_Board_Computers
4 https://en.wikipedia.org/wiki/SPARCstation_10
5 https://en.wikipedia.org/wiki/SGI_Indigo

From Table 1, it can be seen that the algorithms that include orientation have up to double the number of

FLOPS. This is consistent with Figure 1 and is expected since these algorithms require calculation of Euler

angles to manage orientation. The parallel nature of the curves also shows that the ratios of processor times for

the different systems are nearly identical and also provides confidence in the methodology used to determine

processor time.

The results from a Raspberry Pi 3 Model B running the Raspbian operating system are also included.

Interestingly, this single board computer easily outperforms the fastest systems on which the original 1994 tests

were made. For algorithm 4, for example, the Raspberry Pi takes only about 4.5 ms whereas the SGI Indigo 2

running at 150 MHz requires 30 ms and the Motorola VME 330 ms. The general shape of the graph for the

Raspberry Pi is also similar to those of the older systems.

3.2 Systems Tested

Table 3 lists all the systems on which tests were performed. These include single board computer systems,

workstations and modern PCs.

Table 3. Systems tested in present report

System Date Features Operating System

Raspberry Pi 1 model B: BCM2835

(RPI1)

2012 700 MHz ARM1176JZF-S

processor - ARMv6 architecture

Linux (Raspbian)

Raspberry Pi 2 model B (RPI2) 2014 BCM2836 with a 900 MHz 32-bit

quad-core ARM v7 architecture

Linux (Raspbian)

Raspberry Pi 3 model B (RPI3) 2016 BCM2837 SoC with a 1.2 GHz 64-

bit quad-core ARMv8-A

architecture (note there were 2

Raspberry Pi 3 model B systems

tested)

Linux (Raspbian)

Dell Inspiron 13 Notebook (PC1) 2015 Intel i7-5500, 2.4 GHz Windows 10 (Cygwin)

Dell Desktop (PC2) 2013 Intel i7-3770; 3.7 GHz Windows 7 (Cygwin)

Dell Latitude 7280 (PC3) 2017 Intel i7 7600U. Dual core operating

at 3.9 GHz.

Linux (Ubuntu)

Creator Ci20 2015 Dual-core 1.2 GHz MIPS32

processor

Linux (Debian)

Sun Blade 100 workstation 2001 UltraSPARC IIe500 MHz Linux (Debian)

G4 PowerMac 1999 PPC G4 400 MHz Linux (Ubuntu)

Figure 2 shows results from several modern systems. Two Dell computers PC1 and PC2 run Windows 7 and 10

natively and the tests were done using the Linux environment Cygwin. The other, PC3, is a 2017 Dell PC

running Ubuntu. Interestingly their performances are nearly identical across the range of algorithms however

they are far more powerful than the Raspberry Pi system.

Figure 2. Comparison of performance of modern processors for the standard set of dead reckoning

algorithms

3.3 Modern Single Board Systems

As part of this investigation, several single board systems were tested including four Raspberry Pi systems

(running Raspbian) and one Creator Ci20 system. These results are shown in Figure 3. The Sun Blade system

results are also included for comparison.

Figure 3. Comparison of performance of single board systems for the standard set of dead reckoning

algorithms using the defined metric and a semi-log scale

Interestingly there is not a huge difference in performance among the four Raspberry Pi systems although the

RPi2 and RPi3 have more powerful ARM V7 and V8 processors respectively than the initial RPi1 that has the

older ARM V6. The MIPS Creator Ci20 is a Linux/Android development system that comes preloaded with

Debian Linux and has a MIPS 32 processor 6. This system has similar performance to the RPi1 and is roughly

twice as slow as the RPi3. As before the general shapes of the curves are similar on the logarithmic scale. The

performance of the Raspberry Pi machines, as noted previously, is far superior to that of the 1994 systems

6 https://en.wikipedia.org/wiki/Imagination_Creator

enabling these systems to run real time simulations and games. The Sun Blade system (2001) has similar

performance to the Ci20 system (2018).

4. Analysis of Dead Reckoning Performance

4.1 Dead Reckoning Metric

Figure 4 shows the dead reckoning metric for all the systems tested, ranging from 1.0 for the VME processor to

nearly 2000 for modern PC systems running Linux and Windows variants. The systems are sorted in order of

dead reckoning metric value, not age. The four 1994 systems perform worse than a modern Raspberry Pi while

the G4 Power Mac (1999) and Sun Blade (2001) have similar performance to the MIPS ci20 (2018) single

board system. The highest metric of 1865 is measured for the Linux PC with an Intel i7 7600U dual-core system

operating at 3.9 GHz. This demonstrates the vast increase in computing power over the past quarter century.

Figure 4. Comparison of performance of computer systems for the standard set of dead reckoning

algorithms using the defined metric and a semi-log scale (note x-axis denotes computer systems rather

than years)

Gordon Moore observed that the number of transistors in a dense integrated circuit doubled roughly every 18

month – 2 years leading to the eponymous ‘Moore’s Law’ [7]. Thus computing power should also double across

an 18 month to 2 year period if it also scales linearly with number of transistors. Over 24 years there will be

roughly 12 - 16 generations leading to an increase in the range: 4000 - 65000. This is greater than the observed

factor of 1800 but computing performance does not necessarily increase linearly with number of transistors.

Further, many different systems with different architectures are being compared rather than a single processor

family over the 24 year period and there are other factors that influence performance such as clock speed and

cache memory.

4.2 Relative Perfomance of Specific Algorithms

It has been noted previously that the relative performances of the different DRAs are similar across all systems

discussed. A quantitative comparison of relative performance is shown in Figure 5 for the ratios of measured

times of (1) DRA 4/DRA 8, (2) DRA 4/DRA 5, and (3) DRA 8/DRA 9. DRA 4 and DRA 8 were selected since

they are the most complex world-centered and body- centered algorithm respectively while DRA 5 and DRA 9

are the same algorithms with no rotation included.

Figure 5. Comparison of relative performance of all systems for three key dead reckoning algorithms

DRA 4 and DRA 8 have similar performance for all systems with mean ratio 0.84. However the mean value for

DRA 4/DRA 5 is 12.2 while that for DRA 8/DRA 9 is only 2.8 demonstrating that DRA 9 is far slower than

DRA 5. This reflects that DRA 5 is a simple quadratic [1]:

𝑃 = 𝑃0 + 𝑉0∆𝑡 +
1

2
𝐴0∇𝑡2

where P is the dead-reckoned position after time ∆t, and P0, V0, A0 are the initial position, velocity, and

acceleration respectively. In contrast, DRA 9 requires calculation of several rotation matrices to determine the

dead-reckoned position [1]:

𝑃 = 𝑃0 + [𝑅0]𝑤→𝑏
−1 ([𝑅1]𝑉𝑏 + [𝑅2]𝐴𝑏)

where R0 is the entity initial world to body orientation matrix, Vb, Ab are the body referenced velocity and

acceleration respectively and R1 and R2 are as defined in Annex E of [1].

This is also broadly consistent with the FLOPS count in Table 1 where DRA 4 has 99, DRA 5 43, DRA 8 177

and DRA 9 115 FLOPS respectively. It would be expected that DRA 9 would run far slower than DRA 5 from

these data.

4.3 Implications for DIS Version 8

Murray proposed a reduced set of dead reckoning algorithms for DIS Version 8 based on using the Geodetic

Coordinate system [4]. For moving entities, a new single body-referenced algorithm, DRA 10, would be

implemented as the Geodetic equivalent of DRA 8 for moving entities. Circular turns are handled more

accurately using body-referenced coordinates since the circular turning path is derived from angular velocity

rather than acceleration. DRA 1 would still be required for static entities while life forms and hovering

helicopters that can rotate but do not always point in their direction of motion may require other algorithms.

Tests showed that the body-referenced dead reckoning algorithm gives superior performance in geodetic

coordinates than in geocentric for both straight line and circular trajectories.

Considering the above results and analysis, DRA 8 has the greatest number of floating point operations (177) of

the standard algorithm set, but performs only marginally worse than the equivalent world-referenced DRA 4.

However, the highest performing system here (PC3) requires only about 200 ns for this computation and future

systems will perform faster. These results can be used to benchmark proposed algorithms for later versions of

DIS.

5. Discussion

Dead reckoning has long been considered to be a significant user of computing resources in simulation

exercises. However the vast increase in performance over the past quarter century due to Moore’s Law has

resulted in dead reckoning processing times being reduced by a factor of nearly 2000. What required tens of µs

to process on 1990s-era systems now takes hundreds of ns or fractions of 1 µs. For example, the Sparc Station

10 required 73 µs to process DRA 8; the Raspberry Pi 3 Model B requires only 3.35 µs; and a modern Intel-

based PC of the order 0.2 µs. The modern single board hobby systems tested outperformed the most powerful

1994 systems.

Attempts to estimate processor time theoretically from counting the number of floating point operations that

each algorithm processes has too many uncertainties due to different processor architectures. Simply counting

the number of FLOPS for each algorithm ignores the differences in performance of the differing classes of

floating point operation. Experimental measurement using a standard set of parameters is a more accurate

means of assessing performance.

The logarithmic scales show that the relative performance of the algorithms is strikingly similar across different

processors showing that dead reckoning performance increases nearly linearly with increased processing power.

Forward projections for future systems can be postulated based on the historical performance observed.

In this study we have only considered single-threaded dead-reckoning performance. Parallelism can also be

used to increase throughput of the dead reckoning algorithm. In its simplest form this involves running multiple

instances of the dead reckoning algorithm across multiple threads or cores noting that several of the tested

systems have multiple cores (for example, the Raspberry Pi 3 Model B has four cores). More sophisticated

parallelism would require rewriting the dead reckoning implementation software to use vector-based

instructions. For example, Intel AVX-512 instructions can perform the same floating operation to eight 64-bit

doubles values simultaneously, and such a dead reckoning implementation would be capable of dead-reckoning

multiple entities simultaneously.

6. Conclusions

Dead reckoning performance was studied for a range of systems from different technology eras using some

1994 data as the baseline. Results show that dead reckoning performance in even a simple modern processor

such as a Raspberry Pi is far superior to the most advanced 1994 systems. Relative performance of the standard

algorithms also shows similar trends across technology eras with the algorithms that use orientation always

running far slower. These results can be used to predict performance of future systems. They are also relevant to

the approach that will be adopted for the next generation of DIS and other simulation protocols such as the Real

Time Platform Reference Object Model by providing benchmarks for DRA performance.

7. References

1. IEEE (2012). IEEE Standard for Distributed Interactive Simulation--Application Protocols: EEE Std

1278.1-2012.

2. Murray, R. E. (2018). Gen3: What’s Up with DIS Version 8 (2017-SIW-028). In: 2018 Winter

Simulation Innovation Workshop Orlando, Florida, US: 21 - 26 Jan 2018

3. Towers, J. and Hines, J. (1994). Highly Dynamic Vehicles in a Real/Simulated Virtual Environemt:

Equations of Motion of the DIS 2.0.3 Dead Reckoning Algorithms. Report 94-57, Defense Advanced

Research Projects Agency

4. Murray, R. E. (2018). Dead Reckoning in Geodetic Coordinates for Improved LVC Interoperability

(18W-SIW-029). In: 2018 Winter Simulation Innovation Workshop, Orlando, Florida, US: 21 - 26 Jan

2018

5. Limare, N. (2014) Integer and Floating-Point Arithmetic Speed vs Precision

(http://nicolas.limare.net/pro/notes/2014/12/12_arit_speed/).

http://nicolas.limare.net/pro/notes/2014/12/12_arit_speed/

6. Standard for Information Technology - Protocols for Distributd Interactive Simulation Applications,

Version 2. (1993). Institute for Simulation and Training, University of Central Florida

7. Moore, G. E. (1965) Cramming more components onto integrated circuits. In Electronics 38 (8): 114–

117.

8. Author Biographies

WILL OLIVER holds degrees in Aerospace Engineering and Mathematics. Will joined Defence Science &

Technology (DST) Group’s Aerospace Division in 2006 and works in the Air Operations Simulation Centre;

researching interoperability issues and analysis techniques for advanced distributed simulation. Prior to joining

DST, he developed software for flight simulators and simulated maintenance trainers.

DR. PETER RYAN is an Honorary Research Fellow in Defence Science & Technology Group’s Aerospace

Division. He has a 30 year background in the modelling and simulation of military operations. His main

research interests include Advanced Distributed Simulation, real time simulation, synthetic environments, and

their potential to provide enhanced training solutions for the Australian Defence Force. He is a member of

SISO’s DIS Product Development Group.

PETER ROSS graduated from RMIT University in 2001 with a Bachelor of Applied Science, majoring in

computer science. He joined DST’s Aerospace Division in 2003, where he has undertaken a role in evaluating

the use of advanced distributed simulation for collective training.

	ABSTRACT: Dead reckoning (DR) is employed in Advanced Distributed Simulation to reduce the need to continually update a simulated entity’s state information. The IEEE 1278.1 Distributed Interactive Simulation (DIS) protocol standard defines a set of 9...

