
Comparison of High Level Architecture
Run-time Infrastructure Wire Protocols – Part Two

Peter Ross

Defence Science & Technology Organisation

506 Lorimer St, Fishermans Bend VIC 3207, Australia

peter.ross@dsto.defence.gov.au

Keywords:

HLA, interoperability, RTI, simulation, wire protocol

ABSTRACT: Under High Level Architecture (HLA), distributed simulation services are provided by middleware known

as the Run-Time Infrastructure (RTI). Existing RTI implementations, despite being similar in function and performance, do

not interoperate with one another as they each use a different proprietary wire protocol. Appreciating how these protocols

converge and diverge is a necessary first step towards developing an interoperability standard. We describe an effort to

compare the wire protocols of ten state-of-the-art commercial, government and open-source RTI implementations. This

is a continuation of work, presented at SimTecT 2012, that found RTI implementations use similar message encoding and

communication systems. Part Two digs deeper, comparing the data structures, and issuance and receipt rules for popular

HLA services.

1. Introduction

The wire protocol is an essential part of High Level

Architecture (HLA) as it establishes how information is

exchanged ‘on the wire’ between federates. Unlike earlier

distributed simulation technologies, HLA standardises

the Application Programming Interface (API) between

the federate and the middleware, known as Run-Time

Infrastructure (RTI). The standard does not define the

embodiment of the wire protocol, or make assurances

about its performance or behaviour. These decisions are

left up to the RTI implementation. There are many RTI

implementations available today, but because each uses a

different proprietary wire protocol, they do not interoperate

with one another.

The lack of a wire standard means that all federates

must use the same RTI implementation to guarantee

that the federation will execute. To avoid ambiguity

federation agreements specify the RTI implementation by

name and software version [1]. For large exercises or

experiments this often results in some participants having

to change their implementation to satisfy the agreement.

The changeover process is not without cost or technical

risk, though this claim has never been formally studied.

Supporting evidence can be found in the contract notices

of established government projects, where the reasons for

not changing RTIs are sometimes given. The proliferation

of interoperability bridges and gateways is another relevant

data point [2]. These tools cater for situations where

changing the RTI is not feasible.

Since its inception, debate has stirred over the absence of a

standard HLA wire protocol. Supporters of the status quo

assert that standardisation would restrict developer freedom

and performance optimisation, whilst opponents assert that

interoperability would reduce integration cost and permit

better network communication diagnostics [3] [4] [5].

Informed discussion on this issue is made difficult by the

proprietary nature of the technology. Little is actually

known about HLA wire protocols because developers do

not openly publish their specifications.

This paper describes an effort to study the wire

protocols of existing RTI implementations (referred to as

implementations hereon for brevity). We are motivated to

understand the reasons why current implementations do

not interoperate, and what practical steps can be taken

to achieve better interoperability. Due to the breadth

of the study, it has been presented in two parts. Part

One compared the communication systems and message

formats of nine implementations [6]. Part Two compares

the data structures, and issuance and receipt rules for

popular HLA services. A reading of the first paper is not

required to appreciate the findings presented here.

2. Background

The Simulation Interoperability Standards Organization

(SISO) has sponsored two standards activities concerning

wire protocol interoperability. The RTI Interoperability

Study Group was formed after the release of HLA V1.3

to explore issues associated with HLA interoperability.

It acknowledged that a standard wire protocol was the

Ross, P. (2014). Comparison of High Level Architecture Run-Time Infrastructure Wire Protocols—Part Two. Fall Simulation Interoperability Workshop,
8–12 September 2014, Florida Mall Conference Center, Orlando, United States. Paper 14F-SIW-002.

mailto:peter.ross@dsto.defence.gov.au


best long-term solution, but concluded that premature

standardisation may inhibit further development of RTI

implementations [7]. The Open Run-Time Infrastructure

Protocol Study Group was formed several years later after

one vendor published a draft wire protocol called HLA

Direct. The group investigated the feasibility of developing

an interoperability standard, but did not advance further

due to lack of volunteer interest [8]. Both study groups

have since disbanded.

A small quantity of literature is available on the subject of

RTI wire protocols. Some early implementations published

brief descriptions of their protocols [9] [10] [11] [12].

Since all of these implementations have changed in

the decade (or more) following initial release, the

information is insightful, but not especially relevant.

Several authors have compared the distributed computing

algorithms for Time Management and Data Distribution

Management (DDM) [13] [14] [15]. Direct comparisons

between implementations have also been made [16] [17].

While these comparisons primarily consider federation

performance and scalability, they also discuss wire protocol

design limitations.

3. Method

The provision of RTI diagnostic tools by some commercial

vendors, and emergence of mature open-source

implementations, makes meaningful comparison of HLA

wire protocols now possible. A dataset was built

characterising the communication systems and message

formats of ten implementations. Only the services defined

in the HLA V1.3 interface specification, or the equivalent

IEEE 1516 services, were analysed. This enabled a wide

variety of implementations to be considered.

For each implementation, the technical documentation and

source code were first reviewed to understand its concept

of operation and capabilities. Some implementations

provided diagnostic tools which display the contents of

wire protocol messages in human readable form. These

tools aided in the identification of message types and

their structure. RTI communication was also captured and

studied using the Wireshark network protocol analyser1.

Each implementation was evaluated using a suite of test

federates. These federates invoked HLA services in

difference sequences and varied the input parameters. By

running the test federates and monitoring the diagnostic

tools, we were able to appreciate the issuance and receipt

rules for each wire protocol.

Table 1: RTI implementations. Modus operandi (MO)

may be centralised (C), decentralised (D) or hierarchical

(H). Implementations marked with an asterisk were only

partially analysed due to lack of technical documentation

and diagnostic tools.

Implementation MO Version Release date

BH RTI H 2.2 2006

CERTI C 3.4.2 2013

HLA Direct D 0.1 2003

MAK RTI C | D 4.1 2012

OHLA C 0.6 2013

Open RTI C 0.5 2014

Portico D 2.0.0 2013

pRTI 1516 (*) C 3.2.2 2007

RTI NG Pro (*) C | D 4.0.4 2006

RTI-s D D27D 2012

Table 1 lists the implementations and software versions

analysed. These were chosen on the basis of accessibility

to the author, and present a balanced mix of commercial,

government and open-source offerings. Further details on

each implementation can be found in the open literature.

RTI NG, the implementation made freely available by

the United States Defense Modeling & Simulation Office

(now known as the Modeling & Simulation Coordination

Office) was not included as it shares lineage with RTI

NG Pro. Not all implementations provided technical

documentation and the tools necessary for the wire protocol

to be fully appreciated. Analysis of these implementations

was therefore limited to the support, update attribute

values and send interaction services (Sections 4 and 6.3).

3.1. Modelling the RTI

By design, the HLA standard gives no insight into the

internal workings of the RTI. To discuss and reason

effectively about wire protocols, an abstract model of

how the RTI operates internally is needed. The model

was introduced in Part One, and the main elements are

summarised bellow. It is valid for all implementations

analysed.

Components. Run-time Infrastructure is made up of

components called Local RTI Components (LRCs) and

Central RTI Components (CRCs). While these terms

are not defined in the HLA standard, they appear in

RTI documentation and design literature. The LRC

is a software library that each federate links to. It

1 Wireshark website – http://www.wireshark.org/

http://www.wireshark.org/


provides the application programming interface to the

federate developer, and is named ‘librti1516’ or similar.

Coordination of the LRCs, if necessary, is performed by the

CRC. This usually takes the form of a standalone program,

and is named ‘rtiexec’ or similar.

Communication system. Components exchange messages

via communication channels. These may be formed

across different media (such as Internet Protocol or shared

memory) and employ different interconnection methods

(such as multicast, unicast, or relay).

Messages. Components exchange information using

messages. A message consists of a fixed-length header

identifying at least the message type and total length,

followed by a message-specific body. The messaging

system may incorporate additional capabilities, such as

versioning, fragmentation, bundling and compression.

Modus operandi (MO). The manner in which an RTI

organises its components is called its mode of operation.

The mode was found to influence the overall design of

the wire protocol. Three modes were identified. A

centralised operating mode is where LRCs are coordinated

by a single CRC. A decentralised mode is where there

is no central coordination. Finally, a hierarchical mode

is a hybrid of these where multiple CRCs coordinate

LRCs. As only one hierarchical implementation was

included in the study, we consider it in both centralised and

decentralised discussions. Some implementations provided

a configuration option to switch between centralised and

decentralised operating modes. Both options are also

considered in our discussions.

3.2. Findings for centralised implementations

Full findings of the study are presented in Sections 4–7.

From the perspective of the wire protocol, all centralised

implementations were found to behave in a similar manner.

Specifically, when the federate invoked a service, the

LRC would serialise the service parameters into a request

message and send this to the CRC. On receipt of the

message, the CRC would action the request and return a

response message. The CRC would also send ‘callback’

messages to the LRC asynchronously, for services such as

reflect attribute values. To avoid unnecessary repetition

throughout the paper, only exceptions to this behaviour are

discussed.

The wire protocols of centralised implementations can be

likened to the Web Services (WS) API introduced in HLA

Evolved. This is an alternative to the C++ and Java

programming language interfaces. Instead of calling a

function to invoke a service, the federate sends an XML

message to the RTI’s web server2. The web server actions

the request and replies with a response message. The

HTTP client software embedded within a web-enabled

federate loosely resembles a LRC, and the web server can

be thought of as a CRC. Significant differences between the

WS API and wire protocols of centralised implementations

are summarised below.

1. XML message encoding is text based and extremely

verbose, whereas all other wire protocols were

byte-oriented and minimalistic.

2. All centralised implementations were found to use

handles, whereas the WS API requires all concepts

to be referenced by name. Handles are introduced in

Section 4.

3. Federates must poll the web server to

obtain ‘callback’ notifications, whereas the

components of centralised implementations operated

asynchronously.

4. Support services

Handles provide an efficient mechanism for computers to

address concepts by number rather than by name. The

support services of each implementation were analysed to

determine if and how handles were represented on the wire.

When implementing handles, RTI vendors encounter two

design questions. How can handles be generated to ensure

they are unique, and how large should they be? In answer

to the first question, all centralised implementations used

counters that were managed by the CRC.

4.1. Execution handle

When multiple federation executions share the same

communication channel, it is necessary for messages to

identify which execution they belong to. Where they were

used, execution handle sizes varied from 16 to 40 bits.

Two implementations avoided this problem altogether by

forcing executions to occur on different communication

channels. Another published the execution name

verbatim in each message, avoiding the need for handles.

Decentralised implementations were found to generate

handles by either hashing the execution name, or by

combining the first and last letters of the execution name.

4.2. Federate handle

All implementations were found to use federate handles

on the wire. Seven implementations used a 32-bit sized

2HLA Evolved calls this the Web Services Provider Component (WS PRC).



handle, two were 16-bit and one was 12-bit.

Only one decentralised implementation used a distributed

algorithm to ensure the uniqueness of the federate

handle. All other decentralised implementations generated

handles independently using random numbers, hashing the

federate’s process identifier, or combination of the two.

These approaches do not guarantee uniqueness, and it is

possible for handle collisions to occur. To counter this,

some implementations provided an option to manually

specify the federate handle.

4.3. Object instance handles

Two implementations did not use object instance handles

on the wire, instead opting to reference objects by name.

All others used a 32-bit handle.

The remaining decentralised implementations all used a

per-federate object instance counter. The counter was

combined with the federate handle to ensure the object

instance handle was unique across the federation execution.

See [5] for a worked example. This approach places a

limit on the total number of object instances possible per

federate. The smallest default limit observed was 65535. In

recognition of this problem, one implementation provided

an option to tune the total number of object instances

per federate. The total number of objects permitted per

federate could be increased by sacrificing the total number

of supported federates (or vice versa).

When a federate registers an object instance with a

centralised implementation, the LRC has to request an

object instance handle from the CRC. This operations

takes time and must be repeated for each new object.

One implementation maintained a pool of preallocated

handles at each LRC. Only when the pool dropped below

a threshold, did the LRC request more handles from the

CRC. This approach sought to increase performance of the

register object instance service.

4.4. Object model handles

Handles were used by all implementations to represent

named elements of the Federation Object Model (FOM).

In this section we only examine handles for object and

interaction classes, and their attributes and parameters.

Space and dimension handles were not considered, neither

was the impact of modular FOMs. Seven implementations

represented object model handles with 32-bit integers.

Only three used 16-bit integers.

Object model handles were generated by the following

three distinct methods. See Table 2 for an example of

each.

Method 1: Six implementations used an object class

counter and a separate attribute counter for each base

object class. Interaction classes and parameters were

mapped in the same way.

Method 2: Three implementations used an object class

counter, and a separate attribute counter shared by all

object classes. Interaction classes and parameters were

again mapped in the same way.

Method 3: Finally, one implementation used a single

counter shared amongst all elements of the FOM.

Table 2: Example of class and attribute handles generated

by the three different methods.

FOM element
Class and attribute handle

Method 1 Method 2 Method 3

Class A 1 1 1

Attribute a 1 1 2

Attribute b 2 2 3

Attribute c 3 3 4

Class X 2 2 5

Attribute x 1 4 6

Attribute y 2 5 7

Class Z 3 3 8

Attribute z 1 6 9

5. Federation management services

Federation membership is managed by the create and join

federation execution services. The standard requires the

RTI to return an error when a federate tries to claim an

execution or federate name that is already in use. All

centralised implementations relied on the CRC to keep

track of federation executions and their memberships.

Table 3 lists the different methods used by decentralised

implementations. These are described below.

1. Heartbeat Method. Four implementations used a

heartbeat mechanism to convey the existence of

executions and federates to other LRCs. The

execution heartbeat was either sent by all federates

joined to the execution, or just by the creator of the

execution. A flaw exists in the later design. When

the federate that created the execution resigns or is

interrupted, the heartbeat is no longer sent.

2. Query Method. Three implementations used a

query mechanism to ask other LRCs if the proposed

execution or federate name was in use.



3. No Method. Two implementations chose to ignore

the requirement for unique execution names.

Table 3: Methods used by decentralised implementations

for the create and join federation execution services.

Heartbeat interval is indicated in seconds.

Implementation

Execution

deconfliction

method

Federate

deconfliction

method

BH RTI
Query and

Heartbeat(15)
Heartbeat(18)

HLA Direct None Heartbeat(60)

MAK RTI None Query

Portico Heartbeat(3) Query

RTI-s Heartbeat(5)

5.1. File reading and distribution

When a federate invokes the create federation execution

service it must also tell the RTI the location of the FOM

Document Data (FDD) file. The location is expressed as

a Universal Resource Locator (URL) or ordinary filename.

The HLA standard does not define where and how the file

is accessed. All but one implementation relied on the LRC

to read the FDD file. The CRC of the other implementation

was responsible for reading the FDD file.

The FDD location is not a parameter to the join federation

execution service3. The LRCs of joing federates therefore

had to find a way to obtain the file. All centralised

implementations relied on the CRC to supply FDD content

to joining LRCs. This was supplied either in original

text form or a byte-oriented data structure. The methods

used by decentralised implementations to read the file are

summarised below. Some implementations would attempt

more than one method.

Method 1: Request the FDD content from another LRC.

Method 2: Request the FDD location from another LRC,

and attempt to open it locally.

Method 3: If the joining federate also tried to create the

federation (and failed because it already existed), try to

read from the FDD location passed to the earlier create

federation execution service.

Method 4: Append a ‘.fed’ or ‘.fdd’ file extension to the

execution name, and try to open the filename.

Two decentralised implementations also sought to ensure

consistency of the FDD file across the federation. This was

achieved by publishing and comparing file checksums.

6. Object management services

Three design problems concerning object management

were studied: how to prevent object name conflicts; how to

inform new subcribers of earlier created object instances;

and how to communicate attribute and parameter value

updates efficiently.

6.1. Preventing object name conflicts

All centralised implementations relied on the CRC to

track object use and prevent name conflicts. Only one

decentralised implementation addressed this requirement.

During object registration Portico would send a query

message to all fellow LRCs asking if the name was in use.

If no protest message was received after one second, object

registration would proceed. This facility was disabled by

default as it slows down the object registration process.

When no object name is supplied to the register object

instance service, the RTI must generate a unique object

name. All implementations derived a name from a

numeric representation of the object instance handle, e.g.

‘HLA<ObjectInstanceHandle>’. As one implementation

did not use object instances handles on the wire, the name it

generated included as much entropy as possible to prevent

collisions. This included the host IP address, process

identifier, and a local counter.

6.2. Late discovery problem

When a federate subscribes to an object class, the HLA

standard requires it to discover all existing instances

of that object class. We call this the late discovery

problem. Table 4 lists the methods used by decentralised

implementations to solve this problem. They are

described in detail below. Note this aspect of centralised

implementations was not studied.

1. Reactive Method. Three implementations used a

reactive approach. When a new federate joined an

execution, or subscribed to a new object class, the

LRC would send a ‘join’ or ‘subscribe’ message to

all other LRCs. On receipt, LRCs would respond

with a list of relevant object instances that they

owned. This was achieved via a single message

describing all the object instances, or separate

messages for each instance.

3 The join federation execution service was revised in HLA Evolved to accept an optional FDD location parameter.



2. Heartbeat Method. One implementation used

heartbeat messages. The LRC of a federate that

owned an object was responsible for sending its

heartbeat.

3. Lazy Method. One implementation pushed the

late discovery problem onto the federate. New

subscribers to an object class only became aware of

object instances when they were next updated.

All these approaches involve some form of compromise.

Heartbeats waste bandwidth and require federates to wait

until the next heartbeat is published. Reactive methods

can create large message bursts when federates identify

themselves. We did not check to see if any implementations

used message throttling to guard against this. Lazy

discovery assumes object values will be updated routinely,

which is not the case for all simulations.

Table 4: Methods used by decentralised implementations

to prevent object name conflicts and to discover object

instances. Heartbeat interval is indicated in seconds.

Implementation

Object name

deconfliction

method

Late

discovery

method

BH RTI None Heartbeat(18)

HLA Direct None Reactive–Join

MAK RTI None Reactive–Sub

Portico Query Reactive–Join

RTI-s None Lazy

6.3. Communicating attribute and parameter values

The update attribute values service is the workhorse of

the RTI, as this service communicates changes in attribute

values to other interested federates. All implementations

were found to send similarly formatted messages to other

components describing the updated values. The messages

indicated the object instance handle being updated, and

contained a list of attribute handles, value sizes and value

content. This corresponds closely to the parameters of

the update attribute values service. Some implementations

included additional information in the message, such as the

communication channel, transport type and user supplied

tag.

There were subtle differences in the way the information

was arranged within the messages. Four implementations

used a single list of records, where each record described

the attribute handle, value size, and value content. An

example of this, taken from Open RTI, is shown in Table 5.

Other implementations split the handles, value sizes and

value content into separate lists. While these appear to

be arbitrary design choices, the layout will affect message

compressibility and cache utilisation.

The maximum permitted attribute size varied slightly

between implementations. Eight implementations used a

32-bit field to store the attribute value size. The maximum

size for MAK RTI was 16 or 32-bits depending on mode of

operation. HLA Direct, showing its vintage, was limited to

a 16-bit field.

Table 5: Example update attribute values message

Record Field Data type

Header
Magic number 8× uint8

Message size uint32

Message type enum

Body
Federation handle uint16

Object instance handle uint32

User tag size (T ) uint32

User tag value T× uint8

Transport type enum

Number of attributes (N) uint32

Attribute #1
Attribute handle uint32

Attribute size (S1) uint32

Attribute value S1× uint8

...

Attribute #N
Attribute handle uint32

Attribute size (SN) uint32

Attribute value SN× uint8

Invocation of the service did not always result in a single

message being sent. Where separate communication

channels were allocated for reliable and unreliable data,

the update was split into two messages and sent across

the appropriate channels. Our analysis does not consider

DDM, time management or bundling, which may result in

more or less messages being sent.

The send interaction service was achieved using a similarly

structured message across all implementations. The only

significant difference was the inclusion of the interaction

class handle, instead of an object class instance handle.



7. Time stamp representation

HLA defines two types of message ordering, Receive

Ordering (RO) and Time Stamp Ordering (TSO). When

a service is invoked with TSO, the time stamp parameter

must be communicated to other federates, along with the

normal information associated with the service. This was

achieved four different ways.

Three implementations reported the time stamp as a 64-bit

floating point number within the message header. Fixing

the time representation like this prevents use of alternative

federation time libraries. It also wastes bandwidth

for services that do not use time stamps. All other

implementations supported an abstract representation of

the time stamp value.

Two implementations defined separate message types for

the RO and TSO variants of services. The time stamp

value was only included in the TSO variant. Another

implementation adopted an opposite approach to this. It

used a single message for services that were either RO or

TSO, and the time stamp value was always included in the

message body. A zero-length time value signalled an RO

service, otherwise TSO was assumed.

Finally, one implementation defined a special time stamp

message that encapsulated other messages. For example,

when the send interaction service was invoked with

TSO, the implementation would construct a generic send

interaction message, and then wrap it inside the time stamp

message (together with the time stamp value). The special

time stamp message was able to contain multiple messages.

This avoided repetition of the time stamp value for services

invoked at the same logical time.

8. Conclusion

This paper concludes an effort to compare the wire

protocols of ten RTI implementations. Overall we found

all the protocols to be different and incompatible. This

was to be expected! Only by examining how individual

services were conveyed ‘on the wire’, and characterising

the methods used, could the differences and similarity of

wire protocols be appreciated. The significant findings are

summarised below.

1. Mode of operation was found to greatly influence

the design of the wire protocol. The protocols of

centralised implementations were all similar across

the services analysed, and can be likened to the

WS API protocol. Decentralised implementations

were much more varied, employing many different

methods.

2. For each service, there was always at least one

method shared by multiple implementations. Often

this represented the most obvious design choice.

Many novel methods were also observed. The

existance of these demonstrates that the HLA

standard is working as intended. Vendors are

innovating!

3. All decentralised implementations took shortcuts in

addressing HLA requirements. Shortcuts involved

hash functions, random number generators or simply

ignoring the requirements.

Implementation diversity is a core principal of HLA, but

it also creates uncertainty for the federate developer. In the

absence of specific requirements, vendors have had to make

decisions about maximum attribute size, handle limits, time

stamp representation, and even where to read the FDD file.

Vendors of decentralised implementations have also had to

balance standards compliance against achieving acceptable

RTI performance, sometimes choosing the later. We found

these decisions to vary across all implementations. It is

likely that some of these decisions influence federation

development, and contribute to the difficulty of changing

RTI implementations at a later date.

Three limitations of the study must be noted. We

have discussed only the basic services of the HLA

interface specification. Federation save and restore,

synchronisation, Dynamic Data Distribution (DDM) and

Ownership Management services were not evaluated, nor

any of the new capabilities introduced in HLA Evolved.

Secondly, our analysis of the strengths and weaknesses of

each method is quite shallow. A more detailed comparison,

with supporting benchmarks, was beyond the scope of

the study. Finally, RTI implementations and their wire

protocols are frequently updated. The results presented are

only valid for the software versions listed.

As we approach the 20th anniversary of High Level

Architecture, is time to revisit the principals of the original

design? While our findings are insufficient to define a

complete wire protocol standard, the key ingredients have

been identified. More work on this topic is needed. The

study also highlights the technical challenges faced by

decentralised RTI vendors. This kind of RTI makes up

half of the implementations evaluated, yet none could be

regarded as HLA compliant. We hope that the real-world

practices observed in this study will contribute to the next

evolution of the HLA standard.



9. References

[1] IEEE: “Distributed Simulation Engineering and

Execution Process Multi-Architecture Overlay

(DMAO)” IEEE Std 1730.1, 2013.

[2] A.E. Henninger, D. Cutts, M. Loper, R. Lutz,

R. Richbourg, R. Saunders & S. Swenson:

“Live Virtual Constructive Architecture Roadmap

(LVCAR) Final Report” Institute for Defense

Analyses, 2008.

[3] L. Granowetter: “RTI Interoperability Issues – API

Standards, Wire Standards and RTI Bridges” 2003

Spring Interoperability Workshop, 03S-SIW-063.

[4] T.W. Pearce & N.B. Farid: “If RTI’s Have a

Standard API, Why Don’t They Interoperate?”

2004 Fall Simulation Interoperability Workshop,

04F-SIW-100.

[5] K. Mullally, G. Hall, D. Gordon, B. Pemberton

& C. Peabody: “Open Message-Based RTI

Implementation – A Better, Faster, Cheaper

Alternative to Proprietary, API-Based RTIs?”

2003 Spring Simulation Interoperability Workshop,

03S-SIW-112.

[6] P. Ross: “Comparison of High Level Architecture

Run-Time Infrastructure Wire Protocols – Part

One” SimTecT 2012 Conference Proceedings.

❤tt♣✿✴✴❝✐t❡s❡❡r①✳✐st✳♣s✉✳❡❞✉✴✈✐❡✇❞♦❝✴

s✉♠♠❛r②❄❞♦✐❂✶✵✳✶✳✶✳✷✼✽✳✺✽✹✵

[7] M.D. Myjak, D. Clark & T. Lake: “RTI

Interoperability Study Group Final Report”

1999 Fall Simulation Interoperability Workshop,

99F-SIW-001.

[8] J. Woodyard & K. Mullally: “Open Run-Time

Infrastructure Protocol Study Group Final Report”

2004 Fall Simulation Interoperability Workshop,

04F-SIW-018.

[9] J.O Calvin, C.J. Chiang, S.M. McGarry, S.J.

Rak, D.J. Van Hook & M. Salisbury: “Design,

Implementation, and Performance of the STOW RTI

Prototype” 1997 Spring Simulation Interoperability

Workshop, 97S-SIW-019.

[10] M. Karlsson, S. Löf & B. Löfstrand: “Experiences

from Implementing an RTI in Java” 1998

Spring Simulation Interoperability Workshop,

98S-SIW-062.

[11] D.D. Wood & L. Granowetter: “Rationale and

Design of the MAK Real-Time RTI” 2001

Spring Simulation Interoperability Workshop,

01S-SIW-104.

[12] Z. Zhou & Q. Zhao: “Reducing Time Cost of

Distributed Run-Time Infrastructure” Proceedings

of the 16th International Conference on Artificial

Reality and Telexistence, pp969–979, 2006.

[13] B. Watrous, L. Granowetter & D. Wood: “HLA

Federation Performance: What Really Matters”

2006 Fall Simulation Interoperability Workshop,

06F-SIW-107.

[14] P. Gupta & R.K. Guha: “A Comparative Study

of Data Distribution Management Algorithms”

Journal of Defense Modeling and Simulation on

Applications, Methodology, Technology, Vol. 4,

Issue 2, pp127–146, 2007.

[15] J-B. Chaudron, E. Noulard & P. Siron: “Design

and modelling techniques for real-time RTI

time management” 2011 Spring Simulation

Interoperability Workshop, 11S-SIW-045.

[16] L. Malinga & W.H. le Roux: “HLA

RTI Performance Evaluation” 2009 SISO

European Simulation Interoperability Workshop,

09E-SIW-005.

[17] D.R. Azevedo, A.M Ambrosio & M. Vieira: “HLA

Middleware Robustness and Scalability Evaluation

in the Context of Satellite Simulators“ 2013 IEEE

19th Pacific Rim International Symposium on

Dependable Computing (PRDC), pp312 - 317.

Author Biography

PETER ROSS is a first year PhD student at the School

of Computer Science & Information Technology, RMIT

University, Australia. He has taken leave from an

engineering position at the Defence Science & Technology

Organisation (DSTO) to pursue research interests in

agent-based modelling and simulation.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.278.5840
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.278.5840

	Introduction
	Background
	Method
	Modelling the RTI
	Findings for centralised implementations

	Support services
	Execution handle
	Federate handle
	Object instance handles
	Object model handles

	Federation management services
	File reading and distribution

	Object management services
	Preventing object name conflicts
	Late discovery problem
	Communicating attribute and parameter values

	Time stamp representation
	Conclusion
	References

