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Introduction

There are many RTI implementations available today,
but none can interoperate on-the-wire!

I Why is this so?
I Are wire protocols really different?
I What are the implications?

Agenda:
1. Terminology, concepts and motivation
2. Comparison method
3. Results (including findings from Part One)
4. Interpretation
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Example Federation

Flight Deck Scenario
Generator

Federate A Federate B

RTI1516.dll RTI1516.dll RtiExec.exe

LRC LRC CRC

Ethernet Network

Communication media

HLA API

Wire Protocol

I Flight simulator, two federates
I HLA 1516 middleware installed (yellow components)
I Ethernet connectivity
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Example Federation – Theory

Flight Deck Scenario
Generator

Federate A Federate B

RTI1516.dll RTI1516.dll RtiExec.exe

LRC LRC CRC

Ethernet Network

Communication media

HLA API

Wire Protocol

I LRC: Local Run-time Component
I CRC: Central Run-time Component
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Example Federation – Theory

Flight Deck Scenario
Generator

Federate A Federate B

RTI1516.dll RTI1516.dll RtiExec.exe

LRC LRC CRC

Ethernet Network

Communication media

HLA API

Wire Protocol

I LRC: Local Run-time Component
I CRC: Central Run-time Component
I API: Application Programming Interface
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Example Federation – Theory

Flight Deck Scenario
Generator

Federate A Federate B

RTI1516.dll RTI1516.dll RtiExec.exe

LRC LRC CRC

Ethernet Network

Communication media

HLA API

Wire Protocol
I LRC: Local Run-time Component
I CRC: Central Run-time Component
I API: Application Programming Interface
I Wire Protocol: Establishes how components exchange

information
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HLA is an ‘API Standard’

This document provides a specification for the HLA functional
interfaces between federates and the RTI

1516.1-2010 §1.3

Federate Interface Specification describes the requirements

and programming interfaces (Java, C++, Web Services . . . )

but not how the services are to be achieved

In practice:
Each RTI implementation uses a proprietary wire protocol

I We cannot mix components from different vendors
I Often we cannot mix different component versions from

the same vendor
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The Problem

All federates must use the same RTI implementation,
to guarantee a federation will execute

This is the unwritten rule of HLA!
I Not mentioned in any IEEE standard
I Trial by fire for newcomers

Why isn’t this a formal rule?
HLA is indifferent on wire protocol interoperability

I Implementations are not required to interoperate
I But they are also not required to not interoperate
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Current ‘Solution’
A priori agreement:

I Decide on a particular implementation
I State implementation name and software version in

Federation Agreement

What if you are already using a different RTI implementation?

Option 1: Change the RTI implementation

Easy to achieve in laboratory→ “just copy some files”
Less straightforward in real world→ technical risk & cost

Option 2: Use an RTI-to-RTI bridge or gateway
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FedBizOpps.gov
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Technical Risk (2011)

https://www.fbo.gov/index?s=opportunity&mode=form&id=6a347af37763e6175e8e0cf29d1347e9&tab=core& cview=1
http://www.webcitation.org/6S84fVhKK UNCLASSIFIED 8 / 32
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Technical Risk (2012)

https://www.fbo.gov/index?s=opportunity&mode=form&id=9dd53a665a392247e30ba9ee4cf2fe0b&tab=core& cview=1
http://www.webcitation.org/6S8583AJk
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Progress
RTI Interoperability Study Group (1999)

I On standardising the wire protocol:
“while that might be best long-term solution, it might
inhibit experimentation and possible development”

HLA Direct (2003)
I Draft wire protocol by General Dynamics; subset only

OpenRTI Study Group (2004)
I “At this time there are not the resources to pursue a wire

standard, but the concept of a wire standard will remain
alive in the community.”

Every few years somebody throws a grenade on the reflector

Lots of debate, little data
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Research Method
Gather data on existing wire protocol usage

Services of interest
I Support services
I Federation Management
I Object Management
I Time Management

For each implementation:

I Review technical documentation and source code
I Exercise RTI using test federates
I Observe resulting communication with vendor supplied

tools and Wireshark
I Identify common and unique methods
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RTI Implementations

Open HLA

BH-RTI
CERTI

HLA Direct
MAK RTI
Open HLA
OpenRTI
Portico

pRTI 1516 (*)
RTI NG Pro (*)

RTI-s

FlightGear

(* = Partial analysis)
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Example Diagnostic Tool – BH RTI
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Example Packet Capture – CERTI

Step 1. Invoke service

Step 2. Capture resulting packets(s)

Step 3. Correlate service parameters with packet content
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Results

Part One was presented at SimTecT 2012:

I Component organisation
I Communication systems
I Message formats

Part Two:
I Issuance and receipt rules
I Data structures
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Part One – Mode of Operation
The arrangement of LRCs and CRCs influences the design of
the wire protocol

Decentralised

No CRC

Centralised

1 CRC

Hierarchical

> 1 CRCs

Two implementations provided a configuration option to
specify mode of operation (either decentralised or centralised)
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Part One – Communication Media

What transport protocols do components use?
I Internet protocol [all implementations]
I Shared Memory [2]
I HTTPS [1]
I Some implementations provide ‘software routers’ to

extend federation reach across firewalls and proxies.
These were not studied.

Importantly:
Implementations were found to use the same message formats
for different media
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Part One – Interconnects
How is the media used?

Decentralised implementations:
I LRC-to-LRC: all used multicast UDP

Centralised implementations:
I LRC-to-CRC: all used TCP
I LRC-to-LRC: three different methods

1. Multicast UDP
2. Unicast – also known as ‘fully connected’
3. Relay – the CRC relays messages between LRCs

Configuration options were often plentiful. We only examined
the defaults of each implementation.
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Part One – Message Formats
Proprietary byte-oriented data structures [all implementations]

I Header and message body
I Header indicated at least message type and length
I Big-endian [5], little-endian [1], bi-endian [3]

Alternative encodings for some services
I Java Object Serialisation [2], CORBA IIOP [1]

Other format capabilities:
I Versioning [5]
I Fragmentation and reassembly [3], bundling [5]
I Sequence numbers [5], checksums [3]
I Compression [2]
I RTI Initialisation Data (RID) consistency checking [4]
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Part Two
We will discuss items in bold today. See paper for full findings.

I Findings for centralised implementations (*)
I Support services (*)

I Execution handle, Federate handle
I Object instance handles, object model handles

I Federation management services
I Execution name deconfliction
I Federate name deconfliction
I File reading and distribution

I Object management services
I Preventing object name conflicts
I Late discovery

I Communicating attribute and parameter values (*)
I Timestamp representation

(* = includes partial analysis)
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Centralised Implementations

All centralised implementations used request and response
messages between LRC and CRC.

I Handles ‘on the wire’
I Asynchronous messaging
I Direct LRC↔LRC communication

Federate LRC CRC

subscribeInteractionClass()
REQUEST MSG

RESPONSE MSG

DISCOVER MSG
receiveInteraction()
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Late Object Discovery

When a federate subscribes to an object class, it must discover
all existing (and relevant) object instances

How did decentralised implementations achieve this?
I Reactive method [3 implementations]

I When a federate subscribes to an object class, its LRC
sends an announcement message to all other LRCs.

I Other LRCs react, returning list of relevant objects

I Heartbeat method [1]
I The LRC of the owning federate is responsible for sending

heartbeat messages
I Objects are discovered on next heartbeat or update

I Lazy method [1]
I Objects are discovered only when they are updated
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Update Attribute Values Service (1)

This service, coupled with the Reflect Attribute Values service,
forms the primary data exchange mechanism [of the RTI]

1516.1-2010 §6.10

To achieve this, all implementations used a message containing:

I The object instance being updated
I Attribute handles, value sizes, and value content
I Additional information: communication channel, transport

type, user supplied tag

Layout of the attribute data varied:
I Single list of records (next slide) [4 implementations]
I Separate lists [6]
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Example Update Attribute Values Message

Record Field Data type

Header
Magic number 8× uint8
Message size uint32
Message type enum

Body
Federation handle uint16
Object instance handle uint32
User tag size (T ) uint32
User tag value T× uint8
Transport type enum
Number of attributes (N ) uint32

Attribute #1
Attribute handle uint32
Attribute size (S1) uint32
Attribute value S1× uint8

...

Attribute #N
Attribute handle uint32
Attribute size (SN ) uint32
Attribute value SN× uint8
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Update Attribute Values Service (2)
Size of the ‘attribute size’ field

I 32-bit [8 implementations]
I 16-bit [1]
I 16- or 32-bit depending on M.O. [1]

Service invocation did not always result in a single message
I Updates split across reliable and unreliable media
I Did not consider Bundling, DDM or Time Management

Send Interaction Service
Achieved with near-identical data structure

I Object Class Instance Handle→ Interaction Class
I Attribute Record→ Parameter Record
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Summary
Mode of operation greatly influences design of protocol

I Centralised implementations: similar, likened to WS API
I Decentralised implementations: more variety

For each service, at least one method was shared by multiple
implementations.

I Often this was the most obvious design choice
I Novel methods observed
I Absence of sophistication; no Universally Unique

Identifiers (UUIDs), no Distributed Hash Tables (DHTs)

All decentralised implementations took shortcuts:
I Hash functions
I Random number generators
I Ignoring requirements

UNCLASSIFIED 26 / 32



UNCLASSIFIED

Limitations of Study

Other important services were not studied:
I Save-restore, sync, ownership management and DDM
I HLA-Evolved capabilities

Strength and weaknesses analysis of each method lacking
I Which methods are best and why?
I Benchmarks

Results apply only to the software versions listed in paper
I RTI implementations and wire protocols are frequently

updated
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Conclusions
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Leaky Abstractions

All non-trivial abstractions, to some degree, are leaky
Joel Spolsky

Implementation diversity is a core principal of HLA
I RTI design decisions are left open to the vendor

In absence of specific requirements, vendors are making their
own decisions for:

I Handle limits, e.g. max objects per federate
I Maximum attribute and parameter value sizes
I FDD file reading and distribution

These decisions varied across all implementations.

How much do they influence federate development?
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HLA Rule 4

During a federation execution, joined federates shall interact
with the RTI in accordance with the HLA interface specification

1516-2010 §5.4

Rational (informative):
Federate developers can work independently and develop
interfaces to the RTI without regard to RTI implementation

and

RTI developments can proceed without explicit consideration of
federate development.

1516-2010 §A.1.4
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HLA Rule 4 [Change Request]

During a federation execution, joined federates shall interact
with the RTI in accordance with the HLA interface specification

1516-2010 §5.4

Rational (informative):
Federate developers can work independently and develop
interfaces to the RTI without regard to RTI implementation,

and

RTI developments can proceed without explicit consideration of
federate development.

1516-2010 §A.1.4
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Centralised Wire Protocols

Centralised wire protocols were similar because all the hard
work is being done by the CRC!

For this kind of RTI, the wire protocol:

1. Translates API calls into compact messages (and back
again)

2. Establishes communication channels with LRC peers
3. Sends data directly to LRC peers

Ripe for standardisation
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Decentralised Wire Protocols

The only way to make a high-performance
decentralised RTI is to cheat!

Decentralised implementations make up half the RTIs studied

None were ‘HLA compliant’
I Hash functions and random numbers were used to

approximate uniqueness
I Challenging requirements ignored

The data suggests that it is not feasible to build a compliant RTI
without a central server!
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