
UNCLASSIFIED

Comparison of High Level Architecture
Run-Time Infrastructure Wire Protocols

Part Two

Peter Ross
Presented by William Oliver

Defence Science & Technology Organisation
Department of Defence, Australia

2014 Fall Simulation Interoperability Workshop

UNCLASSIFIED 1 / 32



UNCLASSIFIED

Introduction

There are many RTI implementations available today,
but none can interoperate on-the-wire!

I Why is this so?
I Are wire protocols really different?
I What are the implications?

Agenda:
1. Terminology, concepts and motivation
2. Comparison method
3. Results (including findings from Part One)
4. Interpretation

UNCLASSIFIED 2 / 32



UNCLASSIFIED

Example Federation

Flight Deck Scenario
Generator

Federate A Federate B

RTI1516.dll RTI1516.dll RtiExec.exe

LRC LRC CRC

Ethernet Network

Communication media

HLA API

Wire Protocol

I Flight simulator, two federates
I HLA 1516 middleware installed (yellow components)
I Ethernet connectivity

UNCLASSIFIED 3 / 32



UNCLASSIFIED

Example Federation – Theory

Flight Deck Scenario
Generator

Federate A Federate B

RTI1516.dll RTI1516.dll RtiExec.exe

LRC LRC CRC

Ethernet Network

Communication media

HLA API

Wire Protocol

I LRC: Local Run-time Component
I CRC: Central Run-time Component

UNCLASSIFIED 3 / 32



UNCLASSIFIED

Example Federation – Theory

Flight Deck Scenario
Generator

Federate A Federate B

RTI1516.dll RTI1516.dll RtiExec.exe

LRC LRC CRC

Ethernet Network

Communication media

HLA API

Wire Protocol

I LRC: Local Run-time Component
I CRC: Central Run-time Component
I API: Application Programming Interface

UNCLASSIFIED 3 / 32



UNCLASSIFIED

Example Federation – Theory

Flight Deck Scenario
Generator

Federate A Federate B

RTI1516.dll RTI1516.dll RtiExec.exe

LRC LRC CRC

Ethernet Network

Communication media

HLA API

Wire Protocol
I LRC: Local Run-time Component
I CRC: Central Run-time Component
I API: Application Programming Interface
I Wire Protocol: Establishes how components exchange

information
UNCLASSIFIED 3 / 32



UNCLASSIFIED

HLA is an ‘API Standard’

This document provides a specification for the HLA functional
interfaces between federates and the RTI

1516.1-2010 §1.3

Federate Interface Specification describes the requirements

and programming interfaces (Java, C++, Web Services . . . )

but not how the services are to be achieved

In practice:
Each RTI implementation uses a proprietary wire protocol

I We cannot mix components from different vendors
I Often we cannot mix different component versions from

the same vendor

UNCLASSIFIED 4 / 32



UNCLASSIFIED

The Problem

All federates must use the same RTI implementation,
to guarantee a federation will execute

This is the unwritten rule of HLA!
I Not mentioned in any IEEE standard
I Trial by fire for newcomers

Why isn’t this a formal rule?
HLA is indifferent on wire protocol interoperability

I Implementations are not required to interoperate
I But they are also not required to not interoperate

UNCLASSIFIED 5 / 32



UNCLASSIFIED

Current ‘Solution’
A priori agreement:

I Decide on a particular implementation
I State implementation name and software version in

Federation Agreement

What if you are already using a different RTI implementation?

Option 1: Change the RTI implementation

Easy to achieve in laboratory→ “just copy some files”
Less straightforward in real world→ technical risk & cost

Option 2: Use an RTI-to-RTI bridge or gateway

UNCLASSIFIED 6 / 32



UNCLASSIFIED

FedBizOpps.gov

UNCLASSIFIED 7 / 32



UNCLASSIFIED

Technical Risk (2011)

https://www.fbo.gov/index?s=opportunity&mode=form&id=6a347af37763e6175e8e0cf29d1347e9&tab=core& cview=1
http://www.webcitation.org/6S84fVhKK UNCLASSIFIED 8 / 32

https://www.fbo.gov/index?s=opportunity&mode=form&id=6a347af37763e6175e8e0cf29d1347e9&tab=core&_cview=1
http://www.webcitation.org/6S84fVhKK


UNCLASSIFIED

Technical Risk (2012)

https://www.fbo.gov/index?s=opportunity&mode=form&id=9dd53a665a392247e30ba9ee4cf2fe0b&tab=core& cview=1
http://www.webcitation.org/6S8583AJk

UNCLASSIFIED 9 / 32

https://www.fbo.gov/index?s=opportunity&mode=form&id=9dd53a665a392247e30ba9ee4cf2fe0b&tab=core&_cview=1
http://www.webcitation.org/6S8583AJk


UNCLASSIFIED

Progress
RTI Interoperability Study Group (1999)

I On standardising the wire protocol:
“while that might be best long-term solution, it might
inhibit experimentation and possible development”

HLA Direct (2003)
I Draft wire protocol by General Dynamics; subset only

OpenRTI Study Group (2004)
I “At this time there are not the resources to pursue a wire

standard, but the concept of a wire standard will remain
alive in the community.”

Every few years somebody throws a grenade on the reflector

Lots of debate, little data
UNCLASSIFIED 10 / 32



UNCLASSIFIED

Research Method
Gather data on existing wire protocol usage

Services of interest
I Support services
I Federation Management
I Object Management
I Time Management

For each implementation:

I Review technical documentation and source code
I Exercise RTI using test federates
I Observe resulting communication with vendor supplied

tools and Wireshark
I Identify common and unique methods

UNCLASSIFIED 11 / 32



UNCLASSIFIED

RTI Implementations

Open HLA

BH-RTI
CERTI

HLA Direct
MAK RTI
Open HLA
OpenRTI
Portico

pRTI 1516 (*)
RTI NG Pro (*)

RTI-s

FlightGear

(* = Partial analysis)
UNCLASSIFIED 12 / 32



UNCLASSIFIED

Example Diagnostic Tool – BH RTI

UNCLASSIFIED 13 / 32



UNCLASSIFIED

Example Packet Capture – CERTI

Step 1. Invoke service

Step 2. Capture resulting packets(s)

Step 3. Correlate service parameters with packet content

UNCLASSIFIED 14 / 32



UNCLASSIFIED

Results

Part One was presented at SimTecT 2012:

I Component organisation
I Communication systems
I Message formats

Part Two:
I Issuance and receipt rules
I Data structures

UNCLASSIFIED 15 / 32



UNCLASSIFIED

Part One – Mode of Operation
The arrangement of LRCs and CRCs influences the design of
the wire protocol

Decentralised

No CRC

Centralised

1 CRC

Hierarchical

> 1 CRCs

Two implementations provided a configuration option to
specify mode of operation (either decentralised or centralised)

UNCLASSIFIED 16 / 32



UNCLASSIFIED

Part One – Communication Media

What transport protocols do components use?
I Internet protocol [all implementations]
I Shared Memory [2]
I HTTPS [1]
I Some implementations provide ‘software routers’ to

extend federation reach across firewalls and proxies.
These were not studied.

Importantly:
Implementations were found to use the same message formats
for different media

UNCLASSIFIED 17 / 32



UNCLASSIFIED

Part One – Interconnects
How is the media used?

Decentralised implementations:
I LRC-to-LRC: all used multicast UDP

Centralised implementations:
I LRC-to-CRC: all used TCP
I LRC-to-LRC: three different methods

1. Multicast UDP
2. Unicast – also known as ‘fully connected’
3. Relay – the CRC relays messages between LRCs

Configuration options were often plentiful. We only examined
the defaults of each implementation.

UNCLASSIFIED 18 / 32



UNCLASSIFIED

Part One – Message Formats
Proprietary byte-oriented data structures [all implementations]

I Header and message body
I Header indicated at least message type and length
I Big-endian [5], little-endian [1], bi-endian [3]

Alternative encodings for some services
I Java Object Serialisation [2], CORBA IIOP [1]

Other format capabilities:
I Versioning [5]
I Fragmentation and reassembly [3], bundling [5]
I Sequence numbers [5], checksums [3]
I Compression [2]
I RTI Initialisation Data (RID) consistency checking [4]

UNCLASSIFIED 19 / 32



UNCLASSIFIED

Part Two
We will discuss items in bold today. See paper for full findings.

I Findings for centralised implementations (*)
I Support services (*)

I Execution handle, Federate handle
I Object instance handles, object model handles

I Federation management services
I Execution name deconfliction
I Federate name deconfliction
I File reading and distribution

I Object management services
I Preventing object name conflicts
I Late discovery

I Communicating attribute and parameter values (*)
I Timestamp representation

(* = includes partial analysis)

UNCLASSIFIED 20 / 32



UNCLASSIFIED

Centralised Implementations

All centralised implementations used request and response
messages between LRC and CRC.

I Handles ‘on the wire’
I Asynchronous messaging
I Direct LRC↔LRC communication

Federate LRC CRC

subscribeInteractionClass()
REQUEST MSG

RESPONSE MSG

DISCOVER MSG
receiveInteraction()

UNCLASSIFIED 21 / 32



UNCLASSIFIED

Late Object Discovery

When a federate subscribes to an object class, it must discover
all existing (and relevant) object instances

How did decentralised implementations achieve this?
I Reactive method [3 implementations]

I When a federate subscribes to an object class, its LRC
sends an announcement message to all other LRCs.

I Other LRCs react, returning list of relevant objects

I Heartbeat method [1]
I The LRC of the owning federate is responsible for sending

heartbeat messages
I Objects are discovered on next heartbeat or update

I Lazy method [1]
I Objects are discovered only when they are updated

UNCLASSIFIED 22 / 32



UNCLASSIFIED

Update Attribute Values Service (1)

This service, coupled with the Reflect Attribute Values service,
forms the primary data exchange mechanism [of the RTI]

1516.1-2010 §6.10

To achieve this, all implementations used a message containing:

I The object instance being updated
I Attribute handles, value sizes, and value content
I Additional information: communication channel, transport

type, user supplied tag

Layout of the attribute data varied:
I Single list of records (next slide) [4 implementations]
I Separate lists [6]

UNCLASSIFIED 23 / 32



UNCLASSIFIED

Example Update Attribute Values Message

Record Field Data type

Header
Magic number 8× uint8
Message size uint32
Message type enum

Body
Federation handle uint16
Object instance handle uint32
User tag size (T ) uint32
User tag value T× uint8
Transport type enum
Number of attributes (N ) uint32

Attribute #1
Attribute handle uint32
Attribute size (S1) uint32
Attribute value S1× uint8

...

Attribute #N
Attribute handle uint32
Attribute size (SN ) uint32
Attribute value SN× uint8

UNCLASSIFIED 24 / 32



UNCLASSIFIED

Update Attribute Values Service (2)
Size of the ‘attribute size’ field

I 32-bit [8 implementations]
I 16-bit [1]
I 16- or 32-bit depending on M.O. [1]

Service invocation did not always result in a single message
I Updates split across reliable and unreliable media
I Did not consider Bundling, DDM or Time Management

Send Interaction Service
Achieved with near-identical data structure

I Object Class Instance Handle→ Interaction Class
I Attribute Record→ Parameter Record

UNCLASSIFIED 25 / 32



UNCLASSIFIED

Summary
Mode of operation greatly influences design of protocol

I Centralised implementations: similar, likened to WS API
I Decentralised implementations: more variety

For each service, at least one method was shared by multiple
implementations.

I Often this was the most obvious design choice
I Novel methods observed
I Absence of sophistication; no Universally Unique

Identifiers (UUIDs), no Distributed Hash Tables (DHTs)

All decentralised implementations took shortcuts:
I Hash functions
I Random number generators
I Ignoring requirements

UNCLASSIFIED 26 / 32



UNCLASSIFIED

Limitations of Study

Other important services were not studied:
I Save-restore, sync, ownership management and DDM
I HLA-Evolved capabilities

Strength and weaknesses analysis of each method lacking
I Which methods are best and why?
I Benchmarks

Results apply only to the software versions listed in paper
I RTI implementations and wire protocols are frequently

updated

UNCLASSIFIED 27 / 32



UNCLASSIFIED

Conclusions

UNCLASSIFIED 28 / 32



UNCLASSIFIED

Leaky Abstractions

All non-trivial abstractions, to some degree, are leaky
Joel Spolsky

Implementation diversity is a core principal of HLA
I RTI design decisions are left open to the vendor

In absence of specific requirements, vendors are making their
own decisions for:

I Handle limits, e.g. max objects per federate
I Maximum attribute and parameter value sizes
I FDD file reading and distribution

These decisions varied across all implementations.

How much do they influence federate development?

UNCLASSIFIED 29 / 32



UNCLASSIFIED

HLA Rule 4

During a federation execution, joined federates shall interact
with the RTI in accordance with the HLA interface specification

1516-2010 §5.4

Rational (informative):
Federate developers can work independently and develop
interfaces to the RTI without regard to RTI implementation

and

RTI developments can proceed without explicit consideration of
federate development.

1516-2010 §A.1.4

UNCLASSIFIED 30 / 32



UNCLASSIFIED

HLA Rule 4 [Change Request]

During a federation execution, joined federates shall interact
with the RTI in accordance with the HLA interface specification

1516-2010 §5.4

Rational (informative):
Federate developers can work independently and develop
interfaces to the RTI without regard to RTI implementation,

and

RTI developments can proceed without explicit consideration of
federate development.

1516-2010 §A.1.4

UNCLASSIFIED 30 / 32



UNCLASSIFIED

Centralised Wire Protocols

Centralised wire protocols were similar because all the hard
work is being done by the CRC!

For this kind of RTI, the wire protocol:

1. Translates API calls into compact messages (and back
again)

2. Establishes communication channels with LRC peers
3. Sends data directly to LRC peers

Ripe for standardisation

UNCLASSIFIED 31 / 32



UNCLASSIFIED

Decentralised Wire Protocols

The only way to make a high-performance
decentralised RTI is to cheat!

Decentralised implementations make up half the RTIs studied

None were ‘HLA compliant’
I Hash functions and random numbers were used to

approximate uniqueness
I Challenging requirements ignored

The data suggests that it is not feasible to build a compliant RTI
without a central server!

UNCLASSIFIED 32 / 32


	Preliminaries
	Introduction
	Example Federation
	HLA in an `API Standard'
	The Problem
	Current `Solution'
	FedBizOpps.gov
	Technical Risk (2011)
	Technical Risk (2012)
	Progress

	Research Method
	RTI Implementations
	Example Diagnostic Tool – BH RTI
	Example Packet Capture – CERTI

	Results
	Part One – Mode of Operation
	Part One – Communication Media
	Part One – Interconnects
	Part One – Message Formats
	Part Two
	Centralised Implementations
	Late Object Discovery
	Update Attribute Values Service (1)
	Example Update Attribute Values Message
	Update Attribute Values Service (2)
	Summary
	Limitations of Study

	Conclusions
	Leaky Abstractions
	HLA Rule 4
	Centralised Wire Protocols
	Decentralised Wire Protocols


