
 

  

Comparison of High Level Architecture 
Run-Time Infrastructure Wire Protocols – Part One 

 
Peter Ross 

Defence Science & Technology Organisation 
peter.ross@dsto.defence.gov.au 

Abstract.  Under High Level Architecture (HLA), distributed simulation services are provided by middleware known 
as the Run-Time Infrastructure (RTI). Existing RTI implementations, despite being similar in function and 
performance, do not interoperate with one another as they each use a different proprietary wire protocol. Organisations 
must therefore agree to use the same RTI implementation when participating in a HLA experiments or exercise. But 
are proprietary wire protocols really necessary? Is there sufficient similarity amongst RTI implementations to support 
standardisation of the HLA wire protocol? This paper describes an effort to compare the wire protocols of state-of-the-
art commercial, government and open-source RTI implementations. In this paper, Part One, the communication 
systems and message formats of these RTI implementations are analysed in detail. 

1. INTRODUCTION 

The wire protocol is an essential part of High Level 
Architecture (HLA) as it establishes how information is 
exchanged ‘on the wire’ between federates. Unlike 
earlier distributed simulation technologies, HLA 
standardises the Application Programming Interface 
(API) between the federate and the middleware, known 
as Run-Time Infrastructure (RTI). Definition of the wire 
protocol is left up to the RTI implementation. There are 
many RTI implementations available today, but because 
each uses a different proprietary wire protocol, they do 
not interoperate with one another. 

The lack of a wire standard means that all federates 
must use the same RTI implementation to guarantee that 
the federation will execute. Consequently, federation 
agreements specify the RTI implementation name and 
software version [1]. For large exercises or experiments 
this often results in some participants having to change 
their implementation to satisfy the agreement. The 
changeover process is not without cost or technical risk. 

Supporters of the status quo assert that standardising the 
wire protocol would restrict developer freedom and 
performance optimisation, whilst opponents assert that 
interoperability would reduce integration cost and 
permit better network communication diagnostics [2] [3] 
[4]. Informed discussion on this issue is made difficult 
by the proprietary nature of the technology. Little is 
actually known about HLA wire protocols because 
developers do not openly publish their specifications. 

This is the first of two papers describing an effort to 
compare the wire protocols of nine RTI 
implementations (referred to as implementations hereon 
for brevity). The objective of this work is to establish 
foundations for the development of a standard HLA 
wire protocol. In Part One, communication systems and 
message formats are analysed in detail. Part Two shall 
examine the content of messages, and their issuance and 
receipt rules. 

2. RELATED WORK 

The Simulation Interoperability Standards Organization 
(SISO) has sponsored two standards activities 
concerning wire protocol interoperability. The RTI 
Interoperability Study Group was formed after the 
release of HLA V1.3 to explore issues associated with 
HLA interoperability. It acknowledged that a standard 
wire protocol was the best long-term solution, but 
concluded that premature standardisation may inhibit 
further development of RTI implementations [5]. In the 
late 1990s, there was a reasonable expectation for 
further development, as evinced by the many 
implementations now available. Several years later the 
Open Run-Time Infrastructure Protocol Study Group 
was formed after one vendor published a draft wire 
protocol called HLA Direct. The draft supported a 
subset of HLA services; just enough to permit 
interoperability between real-time simulators. It was not 
developed further due to lack of volunteer interest [6]. 
Both study groups have since disbanded. 

The publications associated with some implementations 
in the late 1990s included the design of their wire 
protocols, although the detail was often wanting [7] [8] 
[9] [10]. Since all of these implementations have 
changed in the decade (or more) following publication, 
the information is insightful, but not necessarily relevant 
today. Several authors have compared the distributed 
computing algorithms that are employed by 
implementations such as Time Management and Data 
Distribution Management, but none has examined the 
corresponding wire protocol messages in detail [11] 
[12] [13].  

3. METHOD 

The provision of RTI diagnostic tools by some 
commercial vendors, and emergence of mature open-
source implementations, makes meaningful comparison 
of HLA wire protocols now possible. A dataset was 
built characterising the communication systems and 
message formats of nine implementations. Only the 



 

  

services defined in the HLA V1.3 interface 
specification, or the equivalent IEEE 1516 services, 
were analysed. This enabled a wide variety of 
implementations to be considered. 

For each implementation, the technical documentation 
and source code were first reviewed to understand its 
concept of operation and capabilities. Implementations 
were then evaluated using test federates to exercise the 
HLA services, and the resulting network communication 
between federates was captured using the Wireshark1 
network protocol analyser. The capture files were 
studied to identify message formats and communication 
channels. Some implementations provided diagnostic 
tools which display the contents of wire protocol 
messages in human readable form. These tools aided in 
the identification of message names and their correlation 
with specific HLA services.  

The implementations and software versions analysed are 
listed in Table 1. These were chosen on the basis of 
accessibility to the author, and present a balanced mix 
of commercial, government and open-source offerings. 
Further details on each implementation can be found in 
the open literature. RTI NG, the implementation made 
freely available by the United States Defense Modeling 
& Simulation Office (now known as the Modeling & 
Simulation Coordination Office) was not included as it 
shares lineage with its commercial successor, RTI NG 
Pro. 

Table 1:  RTI implementations analysed; the modus 
operandi (MO) may be centralised (C), decentralised 

(D), or hierarchical (H).  

Implementation MO Version Release date 

BH RTI H 2.2 2006 

CERTI C 3.4.0 2011 

HLA Direct D 0.1 2003 

MAK RTI C, D 4.1 2012 

OHLA C 0.5 2011 

Portico D 1.0.2 2010 

pRTI1516 D 3.2.2 2007 

RTI NG Pro C, D 4.0.4 2006 

RTI-s D D27D 2012 

4. RESULTS 

Results are grouped into subsections covering concept 
of operation, communication system and message 
format. Algorithms and capabilities found to be shared 
amongst many implementations are highlighted, as well 
as unique and novel approaches. 

                                                           
1 Wireshark website – http://www.wireshark.org/ 

4.1 Modus Operandi (MO) 

Run-time Infrastructure is made up of components 
called Local RTI Components (LRCs) and Central RTI 
Components (CRCs). The way an implementation 
arranges its LRCs and CRCs defines its mode of 
operation, or MO, and was found to greatly influence 
the design of the wire protocol. The LRC is a software 
library that is linked with each federate process at run-
time. It provides an application programming interface 
to the federate developer, and was named ‘librti1516’ or 
similar. Coordination of the LRCs, if necessary, is 
performed by the CRC. This took the form of a 
standalone program for all implementations analysed, 
and was named ‘rtiexec’ or similar.  

The MO of each implementation is indicated in Table 1. 
A centralised operating mode is where LRCs are 
coordinated by a single CRC. A decentralised operating 
mode is where LRCs communicate directly with one 
another, avoiding the need for a CRC. Finally, a 
hierarchical operating mode is a hybrid of the earlier 
two that supports the deployment of multiple CRCs. At 
the lower level of the hierarchy each LRC is coordinated 
by a nominated CRC, and at the higher level each CRC 
communicates directly with other CRCs. Both MAK 
RTI and RTI NG Pro provided an option to switch 
between centralised and decentralised operating modes. 
Where this switch has an impact on the wire protocol, 
the operating mode is cited in superscript beside the 
implementation name (for example, MAK RTIC or RTI 
NG ProD).  

4.2 Communication Media 

All implementations were found to exchange formatted 
messages between components, and unsurprisingly, all 
employed Internet Protocol (IP) as the default 
communication medium. Shared memory (SHM) 
communication was optionally supported by MAK RTI 
and Portico, and Hypertext Transfer Protocol Secure 
(HTTPS) was optionally supported by RTI-s. The same 
formatted messages were exchanged over these optional 
communication media. This is significant because the 
perceived difference between IP and SHM 
communication is often used to justify the lack of 
interoperability between implementations [2] [5]. 

Each medium has advantages and disadvantages. IP 
allows for messages to be sent over different packet-
switched infrastructure, such as Ethernet and cellular 
telephony. It abstracts away the details of the underlying 
data links, but this prevents any assumption to be made 
about the quality of service. HTTPS is layered on top of 
IP and permits messages to more easily flow through 
firewalls and proxy servers. It is most relevant in home 
and corporate computing environments. SHM permits 
federates operating on the same computer to share a 
common block of memory. Message queues and global 
variables may exist in this block, offering high 
throughput and low-latency communication.  



 

  

OHLA, Portico and RTI NG Pro were found to depend 
on third-party network communication libraries, while 
others used the standard communication services 
provided by the operating system. The third-party 
libraries provided functionality relevant to the 
implementation of HLA services, such as ensuring 
unique federation execution names. Portico depended 
on the JGroups2 reliable multicast library, taking 
advantage of its channel identification, node addressing 
and message fragmentation functions. OHLA depended 
on the JBoss3 middleware and took advantage of similar 
functions. RTI NG Pro depended on the Adaptive 
Communication Environment4 (ACE) library, but it was 
unclear which functions were used. 

4.3 Communication Channels  

Scalability, throughput and latency are key performance 
indicators of all middleware. Influential here is the way 
the LRCs and CRCs are interconnected by 
communication channels. The exchange of 
administrative messages (such as those associated with 
time management services) and data messages (such as 
those associated with the update attribute values service) 
may be distributed across different channels. Data 
messages may also be sent on different channels 
according to transport type specified in the Federation 
Execution Data (FED) file. 

The communication channels observed between 
components for each implementation are summarised in 
Table 2, with explanation to follow. Note that only the 
default configuration was analysed. Implementations 
were found to provide a myriad of interconnect 
configuration options and additional software-based 
routing tools. A comparison of the options and tools 
available was not performed. 

Table 2:  Communication channels observed between 
components; channels may be unicast UDP (UU), 
multicast UDP (MU), and TCP (T); cardinality is 

indicated in parentheses. 

Implementation LRC-LRC LRC-CRC CRC-CRC 

BH RTI - T MU(2) 

CERTI - T - 

HLA Direct MU - - 

MAK RTI C MU T - 

MAK RTI D MU - - 

OHLA - T - 

Portico MU - - 

pRTI1516 UU, T T - 

RTI NG ProC MU, T T(n) - 

                                                           
2 JGroups website – http://www.jgroups.org/ 
3 JBoss website – http://www.jboss.org/ 
4 ACE website – http://www.cs.wustl.edu/~schmidt/ACE.html 

Implementation LRC-LRC LRC-CRC CRC-CRC 

RTI NG ProD MU - - 

RTI-s MU(n) - - 

4.3.1 Decentralised Interconnects 

All decentralised implementations employed a similar 
interconnect that involved multicast UDP 
communication between LRCs for both administrative 
and data messages. RTI-s assigned different multicast 
channels for specific HLA services, while all other 
implementations used a single multicast channel. There 
was no consensus on UDP port number or multicast 
group address. 

4.3.2 Centralised Interconnects 

Centralised implementations have to concern themselves 
with two interconnection problems. The first is how to 
exchange administrative messages between the LRC and 
CRC, and the second is exchanging data messages 
between the LRCs. 

The first problem was solved identically across all 
implementations. All employed TCP communication 
between the LRC and CRC. RTI NG ProC established 
multiple TCP communication channels between each 
LRC and CRC pair, while other implementations used a 
single channel. 

The second problem, the exchange of data messages 
between LRCs, was solved using the methods outlined 
below. Some implementation used a combination of the 
methods. 

• Relay. The existing LRC-CRC communication 
channel was reused to relay data messages between 
LRCs. CERTI and OHLA employed this method 
for reliable and unreliable data messages, while 
MAK RTI C only used it for reliable data messages. 

• Multicast. Multicast UDP communication channels 
were established for exchanging unreliable data 
messages. MAK RTIC and RTI NG ProC used this 
method, and pRTI1516 supported this as an option.  

• Unicast. Direct communication channels were 
established between LRCs for the exchange of 
reliable and unreliable data. This is sometimes 
referred to as a fully connected RTI. Only 
pRTI1516 and RTI NG ProC used this method. 

Each method offers advantages and disadvantages. The 
relay method greatly simplifies the communication 
architecture, but it adds latency, and the CRC can 
become a throughput bottleneck. Multicast makes 
effective use of bandwidth, but when used on wide area 
networks, requires special configuration of the network 
infrastructure, or the use of software-based routing 
tools. Unicast offers reduced latency, and does not 
require any special configuration, but this comes at the 
expense of increased bandwidth consumption. 



 

  

4.3.3 Hierarchical Interconnects 

BH RTI employed a hybrid of the decentralised and 
centralised interconnects. The exchange of 
administrative messages between LRC and CRC pairs 
was achieved using a single TCP communication 
channel. The relay method was used for the exchange of 
data messages. Communication between CRCs was 
achieved using two separate multicast UDP channels, 
one each for administrative and data messages. 

4.3.4 CRC Discovery 

Centralised and hierarchical implementations require a 
mechanism for the LRCs to discover the network 
address of the CRC. This requirement is not explicitly 
stated in the HLA standard, but was observed in all 
these implementations. MAK RTIC and RTI NG ProC 
employed an automated discovery system, where the 
LRC would send a discovery request message on startup 
to a predefined multicast UDP channel. If a CRC was 
present on the network, it would respond indicating its 
network address, and thus enabling a connection to be 
established between the two components. Other 
implementations relied on a manual discovery 
mechanism. Here the network address and port of the 
CRC were specified in the RTI Initialisation Data (RID) 
file, or as system environment variables. 

4.4 Message Format 

For the bulk of communication, all implementations 
employed a similar message format. Messages were 
encoded using proprietary byte-oriented data structures, 
and comprised a common header and message-specific 
body. For all implementations the header provided 
fields identifying at least the message type and length. 
Message types were enumerated, and frequently named 
after associated HLA services. For example, when a 
federate invoked the send interaction service, the Send 
Interaction message was sent to other federates.  

Five implementations used big-endian byte ordering. 
BH RTI used little-endian byte ordering, while CERTI, 
HLA Direct and RTI NG Pro supported both ordering 
types. Bi-endianess was achieved by indicating the 
message endianess in the first field of the header. 

Additional message formats were used by some 
implementations to complement the proprietary byte-
oriented data structures. Portico and pRTI1516 used 
Java Object Serialisation for some, or all, 
administrative services. This is a facility built into the 
Java programming language that automates the process 
of encoding and decoding messages. RTI NG ProC used 
the CORBA Internet Inter-ORB Protocol (IIOP) for 
administrative and reliable data messages.  

4.4.1 Other Capabilities 

A variety of other capabilities were identified in the 
message header. There was considerable overlap found 
between implementations; none were the sole supporter 
of a specific capability. 

Five implementations were found to include a version 
field in the message header. The purpose of this field 
was to detect situations when incompatible LRC or CRC 
software versions were present in the same federation. 

Message fragmentation and reassembly are required 
when sending messages greater than 64 kilobytes over 
UDP. Three implementations supported fragmentation 
and reassembly. Those that did not support 
fragmentation sent large attribute or parameter values 
over TCP, or otherwise refused to send them. 

Five implementations supported message bundling; five 
implementations supported sequence numbers, for the 
purpose of identifying dropped messages; and at least 
three used message checksums to ensure integrity of the 
message over unreliable communication channels. 
Message compression was supported by MAK RTI and 
RTI-s using the Zlib and FastLZ algorithms 
respectively. Both implementations indicated the use of 
compression via a flag in the header, and applied 
compression to the message body only. 

Four implementations supported consistency checking 
of the RID file. This was achieved by LRCs or CRCs 
sending a checksum of the file in the message header, or 
the CRC sending an authoritative copy of the file on 
request. The former method allows configuration 
mismatches to be detected, while the latter allows LRCs 
to automatically align themselves to the authoritative 
file. 

MAK RTI and RTI-s supported additional capabilities 
to perform federation testing. This included federate 
ping testing, network throughput testing, and remote 
instrumentation, such as measuring disk and processor 
utilisation. 

5. DISCUSSION 

While the nine implementations analysed are inarguably 
different, the data shows similarity in the design of their 
wire protocols. This is even more apparent when 
comparisons are made between implementations sharing 
the same MO. The significant findings are: 

• Internet Protocol was the communication medium 
of choice for all implementations. Alternate media 
were not as prevalent, with only three out of the 
nine implementations analysed supporting them. 

• Decentralised implementations all used practically 
the same interconnect design. Although centralised 
implementations exhibited less similarity, their use 
of communication channels was grouped into three 
methods (relay, multicast and unicast). 

• All implementations employed a system of passing 
formatted messages between components. This 
system was applied across different communication 
media, including IP and SHM. 

• Messages were encoded using byte-oriented data 
structures, although some implementations 



 

  

complemented this with other encodings. Message 
types were often named after the associated HLA 
services. 

• Other message capabilities, such as versioning and 
bundling, were supported by many 
implementations. Message compression was less 
prevalent. 

5.1 Further Work 

Thus far the communication systems and message 
formats of different implementations have been 
compared, but not the actual content of messages. For 
example, when a federate invokes the create object 
instance service, what message types are sent and how 
are they received? Work has commenced answering 
these questions, by analysing the message content and 
issuance and receipt rules for popular HLA services. 
The findings are expected to be published in a follow-on 
paper. 

REFERENCES 

1. Tudor, G. & Zalcman, L. (2006), “HLA Interoperability 
– An Update”, SimTecT 2006 Conference Proceedings, 
pp345-350. 

2. Granowetter, L. (2003) “RTI Interoperability Issues – 
API Standards, Wire Standards and RTI Bridges,” 2003 
Spring Interoperability Workshop, Paper 03S-SIW-063. 

3. Pearce, T.W. & Farid, N.B. (2004) “If RTI’s Have a 
Standard API, Why Don’t They Interoperate?” 2004 Fall 
Simulation Interoperability Workshop, 04F-SIW-100. 

4. Mullally, K. et al (2003) “Open Message-Based RTI 
Implementation – A Better, Faster, Cheaper Alternative 
to Proprietary, API-Based RTIs?” 2003 Spring 
Simulation Interoperability Workshop, 03S-SIW-112. 

5. Myjak, M.D. et al (1999) “RTI Interoperability Study 
Group Final Report,” 1999 Fall Simulation 
Interoperability Workshop, 99F-SIW-001. 

6. Woodyard, J. & Mullally, K. (2004) “Open Run-Time 
Infrastructure Protocol Study Group Final Report,” 2004 
Fall Simulation Interoperability Workshop, 04F-SIW-
018. 

7. Calvin, J.O. et al (1997) “Design, Implementation, and 
Performance of the STOW RTI Prototype,” 1997 Spring 
Simulation Interoperability Workshop, 97S-SIW-019. 

8. Karlsson, M. et al (1998) “Experiences from 
Implementing an RTI in Java,” 1998 Spring Simulation 
Interoperability Workshop, 98S-SIW-062. 

9. Wood, D.D. & Granowetter, L. (2001) “Rationale and 
Design of the MAK Real-Time RTI,” 2001 Spring 
Simulation Interoperability Workshop, 01S-SIW-104. 

10. Zhou, Z. & Zhao, Q. (2006) “Reducing Time Cost of 
Distributed Run-Time Infrastructure,” Proceedings of the 
16th International Conference on Artificial Reality and 
Telexistence (ICAT 2006), pp969-979. 

11. Watrous, B. et al (2006), “HLA Federation Performance: 
What Really Matters,” 2006 Fall Simulation 
Interoperability Workshop, 06F-SIW-107. 

12. Gupta, P. & Guha, R.K. (2007) “A Comparative Study of 
Data Distribution Management Algorithms,” Journal of 

Defense Modeling and Simulation on Applications, 
Methodology, Technology, Vol. 4, Issue 2, pp127-146. 

13. Chaudron, J-B. et al (2011) “Design and modelling 
techniques for real-time RTI time management,” 2011 
Spring Simulation Interoperability Workshop, 11S-SIW-
045. 


