Schema of the Machine Readable Enumerations Document

William Oliver

Peter W. Ross
Defence Science and Technology Organisation

506 Lorimer Street
Fishermans Bend, VIC 3207
Australia
+61 3 9626 7000

{william.oliver,peter.ross } @dsto.defence.gov.au

Keywords:
Distributed simulation, enumerations, schema

ABSTRACT: An essential resource for those responsible for developing and configuring distributed simulations is SISO-REF-010 Enu-
merated and Bit-encoded Values. This Microsoft Word document defines numeric values, known as enumerations, for a large catalogue
of military and commercial equipment. As part of a broader effort to improve the management of SISO-REF-010, a schema has been
developed to represent enumerations in the Extensible Mark-up Language (XML). This paper describes the first release of the machine
enumeration document schema, and provides some historical context.

1 Introduction

In distributed simulations, data is exchanged before, during
and after the simulation. Distributed Simulation protocols,
such as DIS and HLA, address the information exchange
during the execution of the simulation but have little guid-
ance on information exchange before or after a simulation.
Usually any information exchange in these phases is per-
formed manually.

One such manual data exchange is initialising simulation
enumerations. As simulation exercises become more fre-
quent and increase in size, this initialisation process be-
comes a constraint on productivity, and a barrier to more
responsive and even larger simulations.

A machine readable version of SISO-REF-OI has been
developed to help alleviate this issue and create a more us-
able and maintainable document for the future.

This machine readable document permits a single source of
data for all simulators, as well as a human readable version.
A machine readable format also allows a degree of code
simplification, as a single API for accessing enumerations

IThe previous title ‘Enumerations and Bit-Encoded Values’ — often
just ‘EBV-DOC’ has been changed to ‘Enumerations for Simulation In-
teroperability’

data can be used on many simulators.

This paper describes the schema of the machine readable
enumerations document.

2 History

The original enumerations document existed in Microsoft
Word format from 1992 to 2010. This format is not eas-
ily amenable to automatic processing. Additionally it con-
sists largely of free text and the formatting is inconsistent
through the document, making it difficult to process.

There have been at least five calls for a machine readable
enumerations document [[1], [2], [3], [4], [S)]. Four ben-
efits of having a machine readable document have been
noted [6]:

1. Allows the document to be loaded directly by soft-
ware, removing transcription errors.

2. Permits meta-data to be freely associated with the
data.

3. Improves revision control. MS Word is a binary for-
mat and differences between releases are difficult to
see.

4. Permits efficient viewing (or processing) of part or all
of the document as required. For example, layout of
the document may be changed.

2.1 Machine Readable Formats

There have been at least two published attempts at creating
a machine readable format.

The Institute for Simulation and Training produced the
‘DIS Data Dictionary’, a database of entity-type enumer-
ations and DIS message structures. It was a Microsoft
Access database and exploited the report and query tools
provided by Microsoft Access and compatible database en-
gines. An HTML version was available on the Internet [7]],
though the database content has not been updated since
1996.

In 2005 the following requirements for a machine readable
version of the enumerations document were proposed [8]:

1. Both a human readable document and at least one ma-
chine readable format are required;

2. there must be a process to convert between the human
readable document and the machine readable format;

3. any conversion tools that support this process must be
available at no-cost (or industry standard), and not be
encumbered by restrictive licensing conditions;

4. any tools must not have a steep learning curve or re-
quire expert level knowledge to use; and

5. any tools must be available for Microsoft Windows.

The enumerations maintainer then released an XML doc-
ument named ‘XML encoding of DIS EBV’ (XoDIS), to-
gether with a partially populated XML data file containing
entity-type and value-pair enumerations.

2.2 An Improved Format

A third machine readable format was published in 2007.
This improved on the XoDIS proposal, as it offered a fully
populated XML data file, encouraging more immediate
adoption. It also used a simpler, more general, informa-
tion schema that did not have to be updated each time ta-
bles were added or removed from the document. Both the
XoDIS requirements and the 2007 proposal have formed
the basis of the SISO-REF-010 XML document.

2.2.1 Which Technology to Use (or Why XML)?

The main purpose is to have a single source of informa-
tion that can be made easily accessible by both humans and

computers. There are two approaches that can be taken,
have a human readable master format that can be processed
by a computer, or a computer readable master that can
be processed to be human readable. The XoDIS require-
ments noted previously, called on MS Windows availabil-
ity, however many simulations run on older workstations,
some on unusual machines. Recent simulations typically
run on x86 or amd64 compatible computers, and thus it is
also essential that the technology be cross platform. Tech-
nologies that have been proposed include Structured Query
Language (SQL), Microsoft Access, the Lightweight Di-
rectory Access Protocol (LDAP) and plain Comma Sepa-
rated Value files (CSV).

The purpose of the enumerations document is to act as a
repository for simulation enumerations data: it should not
put any constraints on how it is used and implemented.
This means that it must be convertible into a format ac-
ceptable to the end user. This implies the requirement that
the machine readable document be easily converted to other
formats.

The decision to use XML came from the fact that of all the
technologies suggested,

e XML is an open standard from the World Wide Web
Consortium (W3C);

e XML is widely used and cross platform;

e Its openness and ubiquity ensure there are many tools,
both free and expensive, open and proprietary;

e Unlike LDAP or SQL it requires no server software;

e It has a form for describing transformations to other
forms (XSLT—which is itself an open standard);

e XML is a development of older and proven technolo-
gies (both SGML and HTML);

e It is a text format,

— Itis readable by both humans and computers (al-
though raw XML is not ideal for humans);

— There are many revision control systems and dif-
ference tools to compare versions.

2.2.2 Which information model to use (or why not

XoDIS)?

The original enumerations document specified a total of
279 tables, where each table lists enumerated values for
the various DIS Protocol Data Unit (PDU) fields. These
tables were grouped together and arranged into sections.
Each section begins with a brief description of the table,
followed by the table itself.

The XoDIS draft incorporated the notions of section hi-
erarchy into its information schema, and proposed unique
XML elements for each enumeration table. This created an
XML document with over 279 different elements. Whilst
this captured the content and structure of the enumerations
document it was felt that the grouping of data and presen-
tation into one was not an optimal design choice, and the
number of elements would make programming difficult.

There are four distinctive table categories used in the doc-
ument, namely:

1. standard value-description pairs (see table|[T), and

2. bit-masks describing the layout of bit-fields (see ta-

ble2).
3. entity-type enumerations (see table[3),

4. object-type enumerations (similar to entity-type enu-
merations, but not as deeply nested).

Field Value Function Description
1 Multi-function
2 Early Warning
3 Height Finding

Table 1: Example of a Name-Value pair.

Name Bits Purpose
Damage 3-4 Damaged appearance of an air entity
0 - No damage

1 - Slight damage
2 - Moderate damage
3 - Destroyed

Table 2: Example of a Bit-Mask enumeration.

The document also specifies data record structures, which
are specific to the DIS protocol. It is recognised [9], that
data record structures do not belong in the enumerations
document and a separate document has been proposed by
the enumerations coordinator to store such records.

The data model chosen for the machine readable enumer-
ations document was to have distinct elements for the four
categories of data shown above. The perceived benefits are
that a small schema is more easily memorised so a pro-
grammer can use it without having to refer constantly to
documentation, and that the amount of software written to
process enumerations data is reduced — that is, the same
structures and algorithms can be used on a greater subset
of all enumerations data.

3 General Concepts

One of the main considerations at the design stage was to
keep the schema as compact as possible. The intent was
to make all like elements of the same type. It is less effort
to write software to handle a generic enumeration than to
have to write one to handle every case.

There are two information models one must consider in the
XML schema. One is the information model of the data
(the contents of the enumerations document), the other is
the information model of the schema itself (which is ex-
panded on in section).

3.1 XML Elements

As we are replicating the existing enumerations document,
the data model mirrors the way the content is presently ar-
ranged. The information falls into a few general categories,
in addition to the types of data listed in section [2.2.2] there
is document meta-data. It represents information about the
document itself and it is generally not intended for end
users of simulations.

Standard value-description pairs (often called enumera-
tions), are described by the enum element, which contains
enumrow elements, which define individual rows in the ta-
ble. This approach was designed to allow the addition (or
removal) of tables of enumerations without requiring the
schema to change as well. The example shown in table [T]
would be represented by the following simplified XML
block:

<enum>
<enumrow value="1"
description="Multi-Function"/>
<enumrow value="2"
description="Early Warning"/>
<enumrow value="3"
description="Height Finding"/>
</enum>

An entity type table consists of all entity types that share
a kind, domain, and country (for example, there is a table
for all Australian surface platforms). The example entity
type table shown in table [3] would be represented by the
following XML block:

<cet>
<entity kind="1" domain="3" country="13">
<category value="6"
description="Guided Missile Frigate">
<subcategory value="1"
description="ANZAC Class (Meko 200)">
<specific value="1"
description=’"FFH 150 ANZAC’’>
</subcategory>
</category

Kind Domain Country

Category

Subcategory Specific

1 3 13

6 Guided Missile Frigate

1 ANZAC Class (Meko 200)
1 FFH 150 ANZAC

Table 3: Example of an entity type enumeration.

</entity>
</cet>

Bitmasks can contain a number of enumerated values. The
example of a bitmask enumeration in table 2| would be rep-
resented as the following XML block:

<bitmask>
<bitmaskrow_range
name="Damaged appearance of an air entity"
value_min="3"
value_max="4">
<enumrow value="0"
description="No Damage"/>
<enumrow value="1"
description="Slight Damage"/>
<enumrow value="2"
description="Moderate Damage"/>
<enumrow value="3"
description="Destroyed"/>
</bitmaskrow>
</bitmask>

Note how the bitmaskrow_range element contains
enumrow elements. This is because they share the same
properties as an individual datum in a regular enumeration,
reusing the element here reduces the number of elements
we require.

Figure[I]and the simplified structure below represent the el-
ement hierarchy. They show the XML elements that make
up the machine readable enumerations document and their
hierarchical relationship to each other. The presence of a
(_range) in the XML shown below denotes that there is
an alternative element (with _range appended—for exam-
ple there is both an enumrow and a enumrow_range ele-
ment) that allows for a range of values).

ebv
+- revisions
| +- revision

+- dict
| +- dictrow
+- enum
+- header
+- col
+- enumrow(_range)
+--meta

+- bitmaskrow(_range)
+- enumrow(_range)

|
|
|
|
+- bitmask
|
|
| +- meta

+- cet
| +- entity
| +- category(_range)
| +- subcategory(_range)
| +- specific(_range)
| +- extra(_range)
+- cot
| +- object
| +- category(_range)
| +- subcategory(_range)
+- record

+- field

+- datatype

3.2 Unique Identifiers

Every value in DIS can be uniquely identified by its lo-
cation in a PDU, and its value can be looked up in the
enumerations document. This process can be cumbersome
and specific to DIS. In order that there be simpler methods
for identifying an individual datum, and the enumerations
made more easily accessible by other protocols (such as
HLA through the RPR-FOM) a number of unique identi-
fiers are used in the schema.

Every table in the machine readable enumerations docu-
ment has a Unique Identifier (UID—which is an integer).
This allows the referencing of any table in software without
having to perform string comparisons. The assigned uid for
a table will not change [10].

Each row within a table is assigned a Universally Unique
Identifier or UUID [11]. These are 128-bit numbers guar-
anteed to be unique both within the document and univer-
sally unique.

Entity type rows are also assigned a uid, starting at 10, 000.
These values are provided explicitly to support compatibil-
ity with the Common Image Generator Interface (CIGI),
which requires a 32-bit identifier.

4 XML Schema Design Detail

At its most simple, XML schemas define the elements and
attributes that can appear in an XML document, and place
constraints upon the contents. XML has a type system to

ebv

record

datatype

|
revisions dict enum bitmask cet cot
revision dictrow header bitmaskrow bitmaskrow_range entity object
col enumrow enumrow_range category_range category

N

meta

AR

subcategory_range subcategory
specific specific_range
extra extra_range

Figure 1: The machine readable enumerations document XML hierarchy. Note that cr and cr_range elements are not
shown as they can be children of any element (except the root element).

allow the reuse and extension of elements, simplifying the
design of the schema.

The XML schema hierarchy has a number of generic ab-
stract types, which define most of the attributes. Elements
that appear in the machine readable enumerations docu-
ment are instances of types that inherit from one of these
generic types.

The information model and XML elements introduced in
section 3] are expanded on below.

4.1 Schema Generic Types

The schema defines a number of abstract types. An ab-
stract type in XML cannot be used as an instance in a doc-
ument. The purpose is to define attributes or restrictions
that are common to a number of elements, such that another
XML type can then be derived from the abstract type and
inherit its properties as well as add its own. The abstract
types of the machine readable enumerations document are:

generictable_t This is the base type for all elements that
define a table. Its attributes are shown in table 31

genericentry_t This is the base type for all entities and
objects. Its attributes are shown in table]

genericentrydescription_t extends genericentry_t by
adding a mandatory attribute description (a string).

genericentrystring_t is the base type for all sin-
gle valued entries that are strings. It extends
genericentrydescription_t, adding a mandatory
attribute value (a string).

genericentrysingle_t is the base type for all single
valued entries that are integers. It extends
genericentrydescription_t, adding a mandatory
attribute value (an integer).

genericentryrange_t is the base type for all
range values that are integers. It extends
genericentrydescription_t, adding the at-

tributes value_min and value_max (integers).

4.2 Document Root

All XML documents are required to have a single root ele-
ment [12]. The root element for the machine readable enu-
merations document is ebv. Its attributes are shown in table
[6]and the hierarchy has been shown in section[3]and graph-
ically in figure[I]

Name Type Use annotation

footnote string optional Any additional information pertaining to the enumeration entry.

xref positivelnteger optional ~ Cross-reference to another enumeration table (uid).

deprecated boolean optional Flag to indicate the enumeration entry has been deprecated.

status string optional Flag to indicate the approval status of the entry. Pending denotes that the
entry has been proposed, but not yet approved by the EWG; New means
that the entry has been approved by the EWG since that last formal issue
of the database.

draft1278 boolean optional Flag to indicate the enumeration entry applies to a draft revision of IEEE
1278

uuid uuid required Unique numeric identifier for the enumeration entry (RFC-4122).

baseuuid boolean optional Indicate an enumeration entry UUID that this entry was based on (RFC-
4122).

Table 4: Attributes of the abstract type genericentry_t

Name Type Use annotation

uid positivelnteger required Unique numeric identifier for the enumeration table.

name string required Name of the table.

draft1278 boolean optional Flag to indicate the enumeration table applies to a draft revision of IEEE
1278.

deprecated boolean optional ~ Flag to indicate the enumeration table has been deprecated.

Table 5: Attributes of the abstract type generictable_t

4.3 Document Meta-Data

The meta-data elements record information about the enu-
merations document. There are three kinds of meta-data:

1. revision elements that provide a mechanism to record
information about previous published versions of
the document. There are two elements of note,
revisions and revision; the former is the con-
tainer element for the list of revisions, the latter repre-
sents an individual revision.

2. change request elements support revision control.
All elements within the schema, except the root el-
ement, may contain the cr or cr_range elements.
These elements permit changes to be linked back to
the originating SISO-REF-010 change request form.

3. dictionary elements are used to maintain a list of
acronyms. The dict element defines the table and
dictrow elements represent an acronym and its defini-
tion.

The meta-data elements of the machine readable enumera-
tions document are:

revisions extends the generictable_t by allowing
revision elements as children.

revision has three attributes:

title Title of the document—a mandatory attribute
(a string).

date Publication date specified in ISO 8601 date for-
mat (YYYY-MM-DD)—an optional attribute.

uuid Unique numeric identifier for the revision
entry—a mandatory attribute.

cr has one mandatory attribute value, the change request
number (an integer).

cr_range has two mandatory attributes value_min and
value_max, the minimum and maximum change re-
quest numbers (integers).

dict extends the generictable_t by allowing dictrow
elements as children.

dictrow is an instance of genericentrystring_t. It
contains an acronym and its definition.

4.4 Enumerations Table

The enum element is used to represent a table of standard
name-description pairs. These are the most frequent table
types in the standard.

enum is an instance of enum_t which extends
generictable_t by allowing header, enumrow and
enumrow_range elements as children.

header allows column headings for the table. It has col
elements as children.

col has two attributes:

Name annotation

title

Title of the document (e.g. SISO-REF-010-2010.1).

release Release or version number (e.g. Draft 3, Final).

href Internet hyperlink where this document is published.

date Publication date specified in ISO 8601 date format (YYYY-
MM-DD).

description Description of the document.

organisation Publishing organisation.

Table 6: Attributes of the Root Element (<ebv>).

key Meta-data name associated with the column—a
mandatory attribute (a string).

name Name of the column—a mandatory attribute (a
string).

enumrow extends the type genericentrysingle_t by
allowing meta elements as children.

enumrow_range extends the type
genericentryrange_t by allowing meta ele-
ments as children.

meta permits arbitrary meta-data to be associated with an
enumeration. It has two attributes

key Meta-data name or identifier (e.g. units)—a

mandatory attribute (a string).

value Meta-data value (e.g. meters per second)—a
mandatory attribute (a string).

4.5 Bitfield Table

A bit-encoded value in DIS is a data structure where a
number of enumerations are packed into a range of bits in
a field; that is a bitmask contains a number of enumera-
tion values. In the enumerations document a bitfield table
shows the enumerations contained in a bit-encoded value.

Bitfield tables are represented by the element bitmask
while individual bitfields are represented by bitmaskrow
which contains enumrow (or enumrow_range) elements to
represent an individual enumeration value (or row) in the
table.

bitmask extends the type
allowing child elements
bitmaskrow_range.

generictable_t by
bitmaskrow and

bitmaskrow extends the type genericentrysingle_t
by allowing enumrow and enumrow_range elements
as children.

bitmaskrow_range extends the
genericentryrange_t by allowing
and enumrow_range elements as children.

type
enumrow

4.6 Comprehensive Entity Type

The cet element is used to represent the base of the com-
prehensive entity type tables. In the schema the cet el-
ement contains a list of entity elements. These corre-
spond to the tables in the previous EBV-DOC, that is, they
are uniquely defined by a combination of kind, domain
and country. Beneath the entity element there is a hier-
archical structure of category, subcategory, specific
and extra elements that uniquely define an entity.

cet extends generictable_t by allowing entity ele-
ments as children.

entity is an instance of entity_t which extends
genericentry_t by allowing category and
category_range elements, and the following
attributes:

kind a mandatory integer.
domain a mandatory integer.
country a mandatory integer.
uid Unique numeric identifier.

category extends the type genericentrysingle_t by
adding the mandatory attribute uid (an integer)
and allows the child elements subcategory and
subcategory_range.

category_range extends the type
genericentryrange_t by adding the manda-
tory attribute uid (an integer) and allows the child
elements subcategory and subcategory_range.

subcategory extends the type genericentrysingle_t
by adding the mandatory attribute uid (an inte-
ger) and allows the child elements specific and
specific_range.

subcategory_range extends the type
genericentryrange_t by adding the manda-
tory attribute uid (an integer) and allows the child
elements specific and specific_range.

specific extends the type genericentrysingle_t by
adding the mandatory attribute uid (an integer) and

allows the child elements extra extra_range.

specific_range extends the type
genericentryrange_t by adding the manda-
tory attribute uid (an integer) and allows the child
elements extra extra_range.

extra extends the type genericentrysingle_t by
adding the mandatory attribute uid (an integer).

extra_range extends the type genericentrysingle_t
by adding the mandatory attribute uid (an integer).

4.7 Comprehensive Object Type

Comprehensive object types are described in the cot ele-
ment. The layout and attributes of these types are identical
to comprehensive entity types.

cot extends generictable_t by allowing object ele-
ments as children.

object is an instance of object_t which extends
genericentry_t by allowing category and
category_range elements, and the following
attributes:

kind a mandatory integer.
domain a mandatory integer.

uid Unique numeric identifier.

5 Transformation Tools

Closely related to the schema are tools to transform the
document into human-readable and application specific
formats. XML has its own transformation language, XSL
(eXtensible Stylesheet Language [[13]]). A number of trans-
formations have been developed.

1. HTML transform

The HTML transformation allows the document to
be rendered by a web browser and appears similar
in structure to the existing MS Word version of the
enumerations document. It includes Microsoft Word
(WordML) specific mark-up. This allows the HTML
document to be loaded into Microsoft Word, with ta-
ble of contents, page headers and footer displayed cor-
rectly. At the time of writing this transformation is no
longer included with SISO-REF-010.

2. SpreadsheetML transform

The SpreadsheetML transform uses Microsoft’s XML
schema for spreadsheets to allow the creation of a Mi-
crosoft Excel compatible spreadsheet. The spread-
sheet consists of a worksheet for every table in the
enumerations document as well as an index page to
allow easier navigation.

3. C99 header transform

This transform outputs a list of table identifiers, allow-
ing programs written in the C, C++ or Objective-C
languages to request a table from the XML document.

These transforms are provided as proof of concept that the
XML schema allows relatively easy re-use of the data in
a variety of convenient forms. Others may be written, for
example, to generate a format specific to a simulator.

6 Criticisms

6.1 Choice of Schema Languages

There is no requirement that an XML document have a
schema. XML has a concept of ‘well-formed’ that is, it
conforms to the XML syntax rules but places no restric-
tions on the elements and attributes allowable in the doc-
ument. There are two main schema languages for XML:
RELAX-NG and the W3C XML Schema Language. The
W3C schema language was chosen to stay with the W3C’s
recommendations. Further reading suggests that the W3C
schemas are better supported at this time, although less
powerful than RELAX-NG [14].

6.2 Elements vs Attributes

There do not appear to be any hard and fast rules about
the merit of attributes versus elements in XML documents.
One main difference is that an attribute may appear only
once in an element. It is therefore more cumbersome to
have multiple values for an attribute but trivial to have mul-
tiple values for an element. With regard to the enumera-
tions document most information is encoded in attributes.
Having looked extensively at other XML languages the re-
verse seems to be more prevalent.

6.3 The Lack of Text Nodes

In XML terminology text nodes are what goes between an
opening and closing tag of an element.

<element attribute="value">
This is the text node

</element>

The XML enumerations document has no data as text
nodes; all data is encoded as attributes of elements, rather
than as text nodes enclosed by elements. This was not a
conscious design decision but came about as the authors of
the schema simply chose to encode the information in this
way.

6.4 The Lack of Descriptive Text

The XML enumerations document does not contain the de-
scriptive text before and/or after tables that appear in the
MS Word version. The descriptive text exists at present
in the templates to which the various transform tools write
their data. This is a potential problem as it means there are
two sources of data. It is generally good practice to sep-
arate data and presentation. In fact, the XML languages
chosen make this explicit, XML for the data and XSL for
the presentation logic. Having the enumerations and the
text describing enumeration tables, in separate documents
(the XML and the XSL documents) means there are poten-
tially two places to edit data.

When initially embarking on developing the machine read-
able enumerations document, a goal was to create a human
readable version that mimicked the existing one as closely
as possible. At the time the only way to achieve this was to
put the text in the XSL script.

In future it should be possible to put this text into the XML
file and remove it from the XSL file, providing a small
number of style changes can be made to the human read-
able form.

6.5 The use of Typename_t to Describe
Types

The schema makes extensive use of abstract types to define
the elements. For example, the enum element is an instance
of the enum_t type. The use of _t at the end of a type name
is a convention the authors adopted from the C program-
ming language.

While this is perfectly valid, it is not the usual XML con-
vention. It is more common to see some variation of the so
called camelcase, where words are strung together and the
first letter is capitalised. So, our enum element would be an
instance of enumType or EnumType. As with all style con-
ventions, consistency is usually more important than the
convention chosen.

7 Conclusion

In this paper we have detailed the development history
of the machine readable enumerations document and de-
scribed the schema in terms of its constituent elements and
attributes. Having started with the requirements set forth in
XoDIS it is hoped this evolution of the document has pro-
duced a schema that is both relatively easily understood,
yet comprehensive enough to capture all the enumerations
data and see widespread adoption in the simulation com-
munity. Its first formal use is to be the next release of
SISO-REF-010.

8 References

[1] G. Sauerborn, “Non word version?,” 1997. http:
//discussions.sisostds.org/default.asp?
action=9&read=14433&fid=162&boardid=2.

[2] T. DeCarlo, “Looking for enum doc in MS Access
format,” 1999. http://discussions.sisostds.
org/default.asp?action=9&read=14488&fid=
163&boardid=2.

[3] B. Clay, “DIS enumerations list,” 2003. http:
//discussions.sisostds.org/default.asp?
action=9&read=14915&fid=167&BoardID=2.

[4] G. Shanks, “Machine readable DIS Enumerations,”
2005. http://discussions.sisostds.org/
default.asp?action=9&read=15143&fid=
31&BoardID=2.

[5] D. Bruztman, “DIS Enumeration Database and
XML,” 2005. http://discussions.sisostds.
org/default.asp?action=9&read=15188&fid=
31&BoardID=2.

[6] P. Ross, “Machine readable enumerations for im-
proved distributed simulation initialisation interoper-
ability,” in SimTecT 2008 Conference Proceedings,
(Melbourne, Australia), Simulation Industry Associa-
tion of Australia, Simulation Industry Association of
Australia, 12-15 May 2008.

[7] Institute for Simulation and Training, “DIS Data Dic-
tionary (on-line version).” http://siso.sc.ist.
ucf.edu/dis-dd.

[8] G. Shanks, “Machine Readable Enumerations - DIS
Product Development Group Meeting,” in Fall Sim-
ulation Interoperability Workshop, no. 05SF-STW-212,
(Orlando, Florida, USA), September 2005.

http://discussions.sisostds.org/default.asp?action=9&read=14433&fid=162&boardid=2
http://discussions.sisostds.org/default.asp?action=9&read=14433&fid=162&boardid=2
http://discussions.sisostds.org/default.asp?action=9&read=14433&fid=162&boardid=2
http://discussions.sisostds.org/default.asp?action=9&read=14488&fid=163&boardid=2
http://discussions.sisostds.org/default.asp?action=9&read=14488&fid=163&boardid=2
http://discussions.sisostds.org/default.asp?action=9&read=14488&fid=163&boardid=2
http://discussions.sisostds.org/default.asp?action=9&read=14915&fid=16 7&BoardID=2
http://discussions.sisostds.org/default.asp?action=9&read=14915&fid=16 7&BoardID=2
http://discussions.sisostds.org/default.asp?action=9&read=14915&fid=16 7&BoardID=2
http://discussions.sisostds.org/default.asp?action=9&read=15143&fid=31 &BoardID=2
http://discussions.sisostds.org/default.asp?action=9&read=15143&fid=31 &BoardID=2
http://discussions.sisostds.org/default.asp?action=9&read=15143&fid=31 &BoardID=2
http://discussions.sisostds.org/default.asp?action=9&read=15188&fid=31 &BoardID=2
http://discussions.sisostds.org/default.asp?action=9&read=15188&fid=31 &BoardID=2
http://discussions.sisostds.org/default.asp?action=9&read=15188&fid=31 &BoardID=2
http://siso.sc.ist.ucf.edu/dis-dd
http://siso.sc.ist.ucf.edu/dis-dd

(9]

[10]

[11]

[12]

[13]

[14]

L. Marrou, “Enumerations issues,”’ 20009.
http://discussions.sisostds.org/
threadview.aspx?fid=32&threadid=46906.

Distributed Interactive Simulation Product Support
Group, SISO-REF-010.1-2010 Operations Manual
for the Distributed Interactive Simulation Product
Support Group Enumerations Working Group. Sim-
ulation Interoperability Standards Organization, De-
cember 2010.

P. Leach, M. Mealling, and R. Salz, “A Universally
Unique IDentifier (UUID) URN Namespace.” RFC
4122 (Proposed Standard), July 2005.

E. Maler, J. Cowan, J. Paoli, F Yergeau,
T. Bray, and C. M. Sperberg-McQueen, “Ex-
tensible markup language (XML) 1.1 (second
edition),” W3C recommendation, W3C, Aug. 2006.
http://www.w3.0org/TR/2006/REC-xml11-20060816.

M. Kay, “XSL transformations (XSLT) ver-
sion 2.0 (second edition),” W3C proposed
edited recommendation, W3C, Apr. 2009.
http://www.w3.org/TR/2009/PER-x51t20-20090421/.

T. Bray, “Choose Relax Now,” 2006. http:
//www.tbray.org/ongoing/When/200x/2006/
11/27/Choose-Relax.

http://discussions.sisostds.org/threadview.aspx?fid=32&threadid=46906
http://discussions.sisostds.org/threadview.aspx?fid=32&threadid=46906
http://www.tbray.org/ongoing/When/200x/2006/11/27/Choose-Relax
http://www.tbray.org/ongoing/When/200x/2006/11/27/Choose-Relax
http://www.tbray.org/ongoing/When/200x/2006/11/27/Choose-Relax

	Introduction
	History
	Machine Readable Formats
	An Improved Format
	Which Technology to Use (or Why XML)?
	Which information model to use (or why not XoDIS)?

	General Concepts
	XML Elements
	Unique Identifiers

	XML Schema Design Detail
	Schema Generic Types
	Document Root
	Document Meta-Data
	Enumerations Table
	Bitfield Table
	Comprehensive Entity Type
	Comprehensive Object Type

	Transformation Tools
	Criticisms
	Choice of Schema Languages
	Elements vs Attributes
	The Lack of Text Nodes
	The Lack of Descriptive Text
	The use of Typename_t to Describe Types

	Conclusion
	References

