
Acceptance Testing Procedure for Network Enabled
Training Simulators

Peter W. Ross
Peter D. Clark

Air Operations Division
Defence Science & Technology Organisation (DSTO)
PO Box 4331, Melbourne, Victoria, 3001, Australia

+61 3 9626 7615
peter.ross@dsto.defence.gov.au

Keywords:
Distributed Simulation, Simulators, Software Engineering, Training, Testing

ABSTRACT: Acceptance testing is a necessary stage in any complex procurement, as it determines whether the
supplier has satisfied the requirements of the contract. Over the next ten years the Australian Department of Defence
will acquire many new platform training simulators that will support distributed team training, otherwise known as
network-enabled training simulators. This form of training is made possible through the use of distributed simulation
standards. It is necessary to ensure that new simulators comply with the relevant distributed simulation standards
during acceptance testing. However, at present there is no uniform procedure for acceptance testing of these
network-enabled simulators. This paper introduces distributed simulation concepts in relation to platform training
simulators and presents an acceptance testing procedure that is based on the authors’ prior experience with testing of
training simulators. The procedure will facilitate acceptance and interoperability testing conducted on behalf of the
Australian Defence Material Organisation by the Defence Science and Technology Organisation (DSTO). Present
activities include testing of the Royal Australian Air Force’s AP-3C Advanced Flight Simulator and the Royal
Australian Navy’s FFG Upgrade Team Trainer, FFG Upgrade On Board Training System; and Super Seasprite
simulator.

1. Introduction

Over the next ten years the Australian Department of
Defence will acquire several new platform training
simulators that support distributed team training. For
distributed team training to be reliable and cost
effective, and therefore embraced by the user,
simulators must be network interoperable. The risk of
non-interoperability is reduced by thoroughly testing
simulators against the relevant distributed simulation
standards.

A majority of the new Australian platform training
simulators will support the Distributed Interactive
Simulation (DIS) standard. These include the AP-3C
Advanced Flight Simulator, Airborne Early Warning &
Control (AEW&C) Operational Mission Simulator,
Armed Reconnaissance Helicopter (ARH) simulator,
Super Seasprite simulator, and FFG Upgrade Project
Onboard Training System (OBTS). Several simulators
supporting the High Level Architecture (HLA)
standard will be delivered in the future, including the
F/A-18 Hornet Aircrew Training System.

Whilst existing network-enabled training simulators,
including the Royal Australian Air Force (RAAF) AP-
3C Operational Mission Simulator, Air Defence
Ground Environment Simulator, and Royal Australian
Navy (RAN) FFG and ANZAC operations room team
trainers, have supported the DIS standard, the
requirements specification and acceptance testing
procedures have varied. Consequently the capabilities
and limitations vary greatly among simulators, due
often to inadequate requirements specification, varying
model resolution, and defects present in the delivered
product.

To reduce this risk for new acquisitions, Air
Operations Division (AOD), DSTO, has undertaken
research to identify minimum interoperability
requirements and issues relating to the implementation
of network-enabled training simulators [1],[2]. Similar
efforts have been undertaken by other nations [3].
Prior to the present DSTO initiative, there was no
uniform procedure within the Australian Department of
Defence for this form of testing.

2. Distributed Team Training

The term ‘platform training simulator’ is employed by
AOD to describe a human-in-the loop training
simulator that models the virtual battlespace at the
tactical level in real-time. Whilst there are no set rules
for simulator design, a generic simulator normally
consists of five components, that are physically
dispersed throughout the training facility, namely;

Trainer. The component/s manned by the trainee/s, for
example operating consoles, cockpit, operations room,
or bridge. The platform, which the trainer represents, is
referred to as the ownship, or the “ownship entity”
within the simulation.

Control station(s). The component/s used to configure
the simulator and control execution of a training
exercise. Standard functions include defining the
reference point (or game centre), starting and stopping
the exercise, and manually repositioning the ownship.

Instructor/Asset station(s). The component/s that
manages additional entities within the exercise, such as
those representing the red force. Traditionally these
stations have been manned by instructors and the
additional entities controlled using low-level, semi-
automated behaviours. There is a move, however, to
reduce manning requirements through the use of
intelligent agent technology. The instructor station may
also incorporate functionality of the control station or
debrief components.

Debrief. The component that provides performance
feedback to the trainee/s following the execution of an
exercise.

Simulation Computer(s). The component/s that
perform platform dynamics, sensor and emitter
modelling, and display rendering calculations.

2.2 Distributed Simulation

In this context, distributed simulation is the provision
of a shared virtual battlespace, in which trainees
interact in order to achieve training objectives.
Information representing the virtual battlespace is
known as “ground truth” and is exchanged over a data
communications network. This information is
perceived independently by each simulator.

The way in which a simulator internally models the
virtual battlespace is called the internal model. The

internal model is often different for each training
simulator, for example one simulator may consider the
earth’s surface to be flat, whilst another may model it
as an ellipsoid. The internal model is a direct result of
the simulator’s functional requirements and
corresponding engineering design decisions. To
conduct distributed team training, a standard model is
required for all participating simulators. Rather than
forcing all simulators to behave in the same manner, a
secondary model, known as the network model, is
used.

Simulation models, be they internal or network, are
composed of objects and/or interactions. An object
describes information that is persistent for some
duration of the simulation, whereas an interaction
describes an instantaneous event. Though these
network model concepts are present in most distributed
simulation standards, the terminology often varies.

The network model is purely a conceptual
representation of the virtual battlespace, and does not
define how objects and interactions are exchanged
between simulators. The exchange process is instead
defined by the network protocol, also known as the
messaging or wire protocol. The network protocol
often leverages existing network transport
technologies, such as Internet Protocol (IP) or
Asynchronous Transfer Mode (ATM).

Established distributed simulation standards, including
SIMulator NETworking (SIMNET), Distributed
Interactive Simulation (DIS) and the Aggregate Level
Simulation Protocol (ALSP) define a baseline network
model and protocol. More recent standards, including
HLA and the Test and training ENabling Architecture
(TENA), leave the definition of the network model and
protocol open as an engineering design decision. These
design decisions, if not appreciated, lead to non-
interoperability. To counter this, effort has been made
to establish reference or base-line network models, that
whilst not ensuring interoperability, encourage reuse
and commonality between simulations [4].

2.3 Distributed Simulation Interface

Network enabled training simulators incorporate a
sixth component, in addition to the generic simulator
components identified above. This distributed
simulation interface component performs two tasks.
The first is translation, where information represented
by the internal model is translated into a network
model representation, and vice-versa. Information is
often discarded, augmented or converted during the
translation process; coordinate system conversion, for

example, is almost always required. The second task is
exchange, where information represented by the
network model is marshalled and sent to other hosts
using the network protocol, and conversely received
and un-marshalled. Table 1 compares the conceptual
layers of a generic distributed simulation interface for
DIS and HLA against the International Standards
Organisation Open Systems Interconnection (ISO/OSI)
network model [5].

Table 1: Conceptual layers and tasks of a
distributed simulation interface

Layer DIS HLA ISO/OSI
Internal
model

Internal
model

Simulation
Object Model Application

↕ Translation ↕
Network
model PDU types Federation

Object Model Application

↕ Exchange ↕

PresentationNetwork
protocol

Byte order,
Structures,
Heartbeats,
Timeouts

Run Time
Infrastructure Session

Transport
Network

Data Link
Network
transport

User
Datagram

Protocol / IP

Typically
IP

Physical

Objects and interactions generated by the simulator
flow down through the layers, whereas objects and
interactions generated by remote simulators flow up
through the layers. The former is referred to as
sending, and the latter as receiving. When the
distributed simulation interface is not used, the
simulator is said to be operating in stand-alone mode.

2.4 Interoperability

Interoperability is defined as the ability of two or more
systems or components to exchange information, and
to make appropriate use of that information [6]. During
the development of DIS and HLA, networked
simulator interoperability was decomposed into three
distinct levels: compliant, interoperable and compatible
[7],[8].

Compliant. A simulator is considered to be compliant
if the distributed simulation interface is implemented in
accordance with the relevant standards. This is
achieved at the acceptance testing stage, by ensuring
that the translation and exchange tasks are performed
correctly.

Interoperable. Two or more simulators are considered
to be interoperable if they can participate in a
distributed training exercise. This is achieved at the
requirements specification stage, by ensuring that each
simulator is built to equivalent network model and
protocol standards. Engineering design decisions
relating to the choice of network model and protocol
should be reviewed thoroughly, as these directly
influence this level of interoperability.

Compatible. Two or more simulators are considered to
be compatible if they can participate in a distributed
training exercise and achieve training objectives. This
is achieved at the training needs analysis stage by
ensuring that the capabilities and performance of each
simulator are sufficient to meet training objectives. The
expression “fair fight” is frequently used to describe
compatibility.

These definitions demonstrate that a compliant
simulator will not necessarily be interoperable with
other compliant simulators, and likewise, that just
because two or more simulators are interoperable, they
are not necessarily compatible for training.

3. Solution - Acceptance Testing Procedure

The objective of acceptance testing is to establish that
the supplier has satisfied the requirements of the
contract, therefore mitigating the risk of defects or
other inadequacies throughout the project’s operational
lifetime. It occurs prior to ownership of the project
deliverable being handed over to the customer (the
Commonwealth of Australia), and is conducted in the
intended operational environment (the training
facility), as opposed to the supplier’s development
environment. Ideally, few defects should be identified
at the time of acceptance as modern software
engineering practices encourage testing throughout the
product development cycle [9]. Unfortunately such
practices are not always adopted, or if adopted, are
awarded lower priority in the rush to meet delivery
schedules.

Thorough testing of a simulator’s distributed
simulation interface is required for three reasons.
Firstly, distributed simulation protocols are often
intolerant to implementation faults; one incorrectly set
field (or data bit within a field) maybe sufficient to
prevent distributed team training, or lessen its
effectiveness. Secondly, distributed simulation
standards are often ambiguous and incomplete to some
degree, meaning that two standards compliant
simulators may be non-interoperable due to the
suppliers forming different interpretations of the

standard’s intent. Finally, the defects are seldom
apparent until the distributed simulation interface is
used in anger. The cost of resolving defects at short
notice for an exercise is often prohibitive and training
quality generally suffers as a consequence.

Contract requirements often specify implementation to
a subset of distributed simulation standards, as opposed
to interoperability with a specific simulator. For this
reason, as alluded to in section 2.4, acceptance testing
can only guarantee compliance. Interoperability and
compatibility is achieved through consistent
requirements specification, although a uniform testing
procedure serves to reduce the risk of non-
interoperability.

The time and resources allocated to acceptance testing
are often limited; therefore the procedure needs to be
comprehensive, efficient and repeatable. The procedure
employed by DSTO consists of three stages and is
detailed in the following sections.

3.1 Planning

Planning identifies the aspects of the simulator to be
tested, level of manning required to operate the trainer
and/or instructor stations, and the anticipated duration
of testing. Often a simple approach is taken, where
testing of all functionality related to the distributed
simulation interface is proposed. As in the planning for
a distributed training exercise, agreement must be
reached on data, including platform types and the
location within the virtual battlespace whereby testing
will take place. Deployment and set-up of the test
equipment, including data classification and network
media compatibility, must be also considered.

Given that the distributed simulation interface shares
connectivity with other components of the simulator, it
is desirable to perform distributed simulation tests
following preliminary acceptance of the stand-alone
simulator. Otherwise, the results of testing may be
influenced by defects present in the stand-alone
simulator.

3.2 Test Activity

The test activity occurs at the training facility and often
spans several days, depending on the amount of testing
proposed in the planning stage. The black box testing
methodology, which evaluates the functionality or
performance of the system irrespective of internal
implementation details, is employed. Figure 1 shows
the black box view of a generic training simulator,

where the exposed interfaces are the Human Machine
Interface (HMI) and Network Interface Card (NIC).

The functional requirements are tested by stimulating
the black box with input actions and witnessing the
resulting outputs. This is performed in an iterative
manner using a library of test cases tailored to the
distributed simulation standards supported by the
simulator. Test cases are categorised into three types:

• Configuration testing verifies that the simulator can

be configured appropriately for a distributed
training exercise.

• Send testing verifies that information sent by the
simulator complies with the relevant simulation
standards. The input actions for send tests normally
relate to the HMI.

• Receive testing verifies that the simulator responds
correctly to information generated by remote
simulators. The input actions for receive tests
normally relate to the NIC or network model.

Figure 1: Black box view of a training simulator

It is desirable to perform testing in the order listed
above as this enables an understanding of the
simulator’s capabilities to be acquired through a
passive analysis of the network data, prior to sending
information to the simulator.

Certain test cases, such as dead reckoning accuracy
tests, require detailed analysis of the witnessed output,
and are best performed following the test activity (for
example, in a laboratory environment) to make more
efficient use of time with the simulator. To facilitate
this, relevant HMI actions and network data sent and
received by the NIC are recorded in a test log, which is
a combination of written notes and data files, where
log entries are time stamped to enable correlation of
events.

3.3 Documentation

Following the test activity, a document is produced that
details the results of testing. The report can be styled as
either a formal report, that introduces the simulator and

describes the outcomes of test activity, or a
compilation of individual incident reports, where each
cites the outcome of a specific test case.

Regardless of the style used, each problem identified is
highlighted by severity, and the potential impact on
training effectiveness explored in terms meaningful to
the project authority. DSTO currently employs a three
tier severity rating scheme, where a FAULT indicates
non-compliance that prevents interoperability with
another simulator, and resolution is advised. An ISSUE
indicates non-compliance, however the problem is
unlikely to prevent interoperability, and therefore
resolution is desirable. An ACTION indicates the need
for further testing as the severity of the problem is
unknown, for example, due to contradictory test
results.

Ultimately the report indicates whether the project
authority should accept the distributed simulation
component of the simulator, and if not, makes
recommendations for change. If significant problems
are identified, the relevant test cases should be repeated
to ensure that the supplier makes appropriate
corrections.

4. Test Case Development

Test cases serve to demonstrate the implementation of
individual distributed simulation requirements. There
are several types of requirements for distributed
simulation, as shown in Table 2. An example network
model requirement may stipulate “simulation of
Identification Friend or Foe (IFF) transponder mode
3”. Each requirement type differs in terms of
complexity, test case development methodology and
the equipment suitable to facilitate test execution.

Given that distributed simulation standards are often
ambiguous, it is necessary for the test engineers to
have a clear and consistent understanding of the
standards requirements. In related research, DSTO has
documented known ambiguity and established
interpretations of the DIS standard, and is actively
involved in the development of a revised standard
[10],[11]. To add authority and assist defect resolution,
test cases should reference the original requirements
text, and state any interpretations applied.

Table 2: Distributed simulation requirements
Requirement Suitable test equipment
Network hardware Another network device
Network transport Transport manipulation utilities
Network protocol Object and interaction generation

Network model and instrumentation equipment

Training Scenario generator, or
another training simulator

Network transport and hardware requirements are
normally evaluated using a small number of test cases,
for example, to demonstrate Internet Control Message
Protocol (ICMP) ping replies, network address and
port configuration, and hardware compatibility with
other network devices, such as switches, hubs and
routers.

For each network protocol requirement, test cases are
developed to demonstrate exchange of data, for
example, packet heartbeat intervals, byte ordering and
data structure placement. Because the network protocol
is frequently synonymous with the network model,
these tests are carried out in parallel with network
model tests. However, for some distributed simulation
standards, it is possible to independently test the
network protocol implementation [12].

For each network model requirement, the related
objects and interactions are identified, and test cases
written for relevant field permutations, with respect to
send and receive testing. This is done to exercise all
relevant software execution paths. For example, the
IFF requirement above would be evaluated with at
least four test cases, in order to demonstrate sending
and receiving of mode 3 when the transponder is
enabled and disabled. If the requirement stipulates
configurable data, such as platform and system
enumerations, additional test cases are written to
demonstrate re-configuration of the data.

Training requirements are evaluated by demonstrating
use of the simulator under anticipated operational
conditions, such as the execution of a standard training
scenario or loading of the system with a prescribed
number of entities. Test cases may also address
relevant operator manuals and maintenance training
packages, although this has been outside the scope of
testing previously undertaken by the authors.

5. Recent Application

The acceptance testing procedure has been applied to
several training simulators and a number of technical
reports written. Whilst it is inappropriate to cite
specific simulator defects, there are some common,
recurring problems, that are categorised below. Whilst
for the most part trivial software faults, if not identified
during acceptance, or whilst the simulator is under
warranty, these are often far from trivial to resolve.
Where defects cannot be resolved, the related simulator

functionality is ignored for training purposes, or
additional equipment is installed to intercept network
data exchanged between simulators, and modify or
filter it accordingly.

• Measurement units are not respected, for example,

knots are reported when the standard mandates
metres/sec. FAULT.

• The association between objects and/or interactions
is not maintained, for example between
corresponding Fire and Detonation interactions.
FAULT or ISSUE, depending on the association.

• Unused fields are set to zero or to random numeric
values. FAULT or ISSUE, depending on
circumstances.

• Packet heartbeat interval, byte ordering or data
structure placement rules are not followed. FAULT.

• Enumerations, or data that may at some point need
to be modified, is hard-coded into the software, and
cannot be configured by operator or maintenance
staff. ISSUE.

• Instability, or program crashes when fields are set
to values not anticipated by the simulator. FAULT
or ISSUE, depending on likelihood of a crash.

6. Conclusion

Acceptance testing is a frequently under-appreciated
area of distributed simulation, as evident from its
recent application. The procedure presented in this
paper is beneficial to the Australian Department of
Defence and the wider simulation community, as it
allows network-enabled training simulators to be
comprehensively tested in an efficient and repeatable
manner. AOD has published a library of DIS test cases
to inform project management and engineering staff
alike, and this document was recently made available
to the public [13]. Whilst emphasis has been placed on
DIS testing, the procedure is applicable to other
distributed simulation standards.

This paper details recent work undertaken in
developing a uniform testing procedure for network-
enabled training simulators. Development of the
procedure began in 2002 during involvement with
acceptance testing of a RAN operations room trainer
upgrade project. It has matured substantially through
the course of use, with the development of a DIS test
case library representing the bulk of the effort.

7. References

 [1] Zalcman, L.B., (2004), "What Questions Should I

Ask Regarding DIS or HLA Interoperability For

My ADF Simulator Acquisition?" Proceedings of
the 9th SimTecT Conference, May 2004,
Canberra, Australia.

[2] Zalcman, L.B., (2004), "Which DIS PDUs Should
Be In My ADF Training Simulator?" Proceedings
of the 9th SimTecT Conference, May 2004,
Canberra, Australia.

[3] Valle, T., and B. McGregor, (2004), "The DMT
Master Conceptual Model". Interservice/Industry
Training, Simulation and Education Conference
2004, December 2004, Orlando, Florida, USA.

[4] Simulation Interoperability Standards
Organization Guide for Base Object Model Use.
Document no SISO-STD-003.0 DRAFT V0.12. 26
October 2005.

[5] ISO/IEC 7498-1:1994(E), (1994), "Information
technology - Open Systems Interconnection -
Basic Reference Model: The Basic Model".

[6] IEEE 610-1990, (1990), "IEEE Standard
Computer Dictionary: A Compilation of IEEE
Standard Computer Glossaries". ISBN 1-55937-
079-3.

[7] Loper, M.L., (1996), "HLA Testing: Separating
Compliance from Interoperability". Proceedings
14th DIS Workshop on Standards for the
Interoperability of Distributed Simulations, March
1996, Orlando, Florida, USA.

[8] Ratzenberger, A., (1995), "DIS Compliant,
Interoperable and Compatible: The Need for
Definitions and Standards". Proceedings of the
12th DIS Workshop on Standards for the
Interoperability of Distributed Simulations, March
1995, Orlando, Florida, USA.

[9] Hetzel, Bill, (1988), "The Complete Guide to
Software Testing (Second Edition)". ISBN 0-
89435-242-3.

[10] Simulation Interoperability Standards Organisation
(SISO) Product Nomination for the IEEE 1278.1
Distributed Interactive Simulation (DIS) Product
Development Group - September 2004.

[11] Ryan, P.J, Ross, P.W., Clark, P.D., and L.B.
Zalcman, (2005), "Australian Contribution to
International Simulation Standards Development".
Proceedings of the 10th Simulation and Training
Technology Conference, May 2005, Sydney,
Australia.

[12] Symington, S., Kaplan, J., Kuhl, F., Tufarolo, J.,
Weatherly, R., and J. Nielsen, (2000), "Verifying
HLA RTIs". Fall Simulation Interoperability
Workshop, September 2000, Orlando, Florida,
USA.

[13] Ross, P.W and P.D. Clark, (2005),
“Recommended Acceptance Testing Procedure for
Network Enabled Training Simulators”. Technical
report no. DSTO-TR1768. Available

electronically:
http://www.dsto.defence.gov.au/publications/4301
/DSTO-TR-1768.pdf

Author Biographies

PETER ROSS graduated from RMIT University in
2001 with a Bachelor of Applied Science, majoring in
computer science. Mr Ross joined the Air Operations
Division in 2003, and works in the Advanced
Distributed Simulation Laboratory; researching
communications and interoperability issues in the area
of Advanced Distributed Simulation.

DR PETER CLARK is a Senior Research Scientist
(Executive Level 2) in Air Operations Division,
DSTO. He graduated from the Australian National
University (ANU) with BSc (Hons) in 1978, and PhD
in Physics in 1981. He joined the Australian Defence
Department in Canberra in 1982 as a Research
Scientist in the area of operations analysis. In 1989 he
was appointed for a five year period as the Scientific
Adviser to Army's HQ Training Command in Sydney.
In 1994 he was appointed as a Senior Research
Scientist with DSTO's Air Operations Division where
he has worked on Navy, Air Force and Army
simulation projects. Dr Clark has 25 years experience
in simulation research, with an emphasis on Human-in-
the-Loop real-time simulation, computer-generated
forces, and the technologies associated with Advanced
Distributed Simulation.

http://www.dsto.defence.gov.au/publications/4301/DSTO-TR-1768.pdf
http://www.dsto.defence.gov.au/publications/4301/DSTO-TR-1768.pdf

